Оценить:
 Рейтинг: 0

«Философия зоологии» Жана Батиста Ламарка: взгляд из XXI века

Год написания книги
2009
<< 1 2 3 4 5 6 ... 10 >>
На страницу:
2 из 10
Настройки чтения
Размер шрифта
Высота строк
Поля

В 50 лет Ламарку пришлось входить в круг зоологических проблем и начинать с наименее изученных на то время групп животных. Но интересы Ламарка не ограничивались зоологией. Он активно работает в физике и химии. В 1797 г. Ламарк выпустил «Мемуары по физике и естественной истории». По мнению многих комментаторов, в этом сочинении Ламарк придерживался уже устаревших на то время воззрений, в частности, по вопросу о флогистоне, вступив тем самым в научное противостояние со школой Лавуазье (Antuan Laurent Lovoisier, 1743-1794). Уже после казни Лавуазье (1974 г.) Ламарк издал сочинение Rеfutation de la thеorie pneumatique, ou de la nouvelle doctrine des chimistes modernes, Paris: chez Г Auteur, Agasse, 1796 (Опровержение пневматической теории, или новой доктрины современной химии), в котором критически рассмотрел Philosophic chimique (1792) – книгу графа Фуркруа (Antoine-Frangois, Comte de Fourcroy, 1755-1809), ученика Лавуазье, известного химика и энтомолога, работавшего по второй специальности вместе со знатоком жуков Этьеном Жоффруа (Etienne Louis Geoffroy, 1725-1810). Для получения более полной информации по теории флогистона мы отсылаем читателя к довоенной (1937 г.) книге известного химика и историка химии Бориса Николаевича Меншуткина (1874-1938).

Концептуальный каркас теории флогистона был разработан немецким врачом Бехером (Johann Joachim Becher, 1625-1682) в его Physica subterranean (1669). Всеобщее признание идеям Бехера пришло благодаря усилиям его ученика Георга Шталя (Georg Ernst Stahl, 1660-1734), давшего их систематическое изложение в Истинной теории медицины (Theoria medica vera, 1707) и придумавшего термин «флогидзон», позже замененный на «флогистон» (от греческого jlоz, phlоx – горение), введенный еще раньше, в 1606 г. Николой Гапелиусом (Nicolaus Niger Hapelius, 1559-1622), работы которого были опубликованы в 1613 г. в четвертом томе шеститомной химической антологии Theatrum Chemicum (см. Меншуткин, 1937; Фигуровский, 1969).

Теория флогистона покоилась на схоластическом противопоставлении субстанции и свойств: свойства должны иметь в субстанции свой источник, какой-то материальный или нематериальный (в некоторых версиях доктрины) носитель. Эти носители свойств называли в алхимии principes. Например, принцип (начало, источник, элемент, отвечающий за свойство) кислотности, сладкости, теплоты, металлического блеска и т.д. В алхимии также различали начала, которые отвечали группам свойств, наблюдаемых у конкретных веществ. Обычно принимали три основных начала: таковы сера, Меркурий (ртуть) и введенная позже и не всеми принимаемая соль (мышьяк). На реальном существовании солей особенно настаивал Парацельс (Philippus Aureolus Theophrastus Paracelsus Bombastus, 1493-1541). Считали, что материя состоит из этих трех (или двух) начал, соединенных в разных пропорциях. Сера и ртуть лежат в основе металлов и минералов: сера определяет в металлах твердость, горючесть, цвет и другие качества, тогда как ртуть – блеск, ковкость, летучесть. Соль определяет свойство металлов давать соли при соединении с кислотами. Соотношение серы и ртути в металле можно изменить и превратить один металл в другой, в том числе в серебро или золото, если будут найдены правильные соотношения серы и ртути. В природе эти процессы идут, но очень медленно. Задача алхимика состояла в том, чтобы раскрыть эти природные законы трансмутации и смоделировать их в лаборатории. Этому в период становления алхимии в Западной Европе учил Роджер Бэкон (Roger Bacon, 1214-1294).

Наряду с началами алхимики, следуя древнегреческой традиции, выделяли четыре элемента – землю, воду, воздух и огонь, отражающие четыре состояния материи: твердое (земля), жидкое (вода), пламя (огонь) и разреженное (воздух). Впрочем, два последних состояния часто сводили к двум первым, считая, что огонь скрыт в земле, поскольку твердые тела обладают горючестью, а воздух – в воде, учитывая переход воды в пар при нагревании.

Бехер вместо одного твердого элемента (земли) предположил существование трех земель, входящих в состав тел: стеклующую, определяющую плавкость, горючую, или жирную, определяющую горение, и ртутную в качестве субстанции летучести. Этим землям соответствуют три начала Парацельса, а именно соль, сера и ртуть. К этим трем землям Бехер добавлял четвертый элемент воду. Таким образом, в системе Бехера материя состояла из двух элементов – земли, существующей в трех формах, и воды. Важно подчеркнуть, что эти элементы воспринимались уже не как отвлеченные принципы устройства тел, но наделялись материальным бытием, были элементами в истинном смысле слова. В металлах заключены все три земли, но содержащиеся в разных пропорциях. Например, в железе много соли, мало серы и совсем немного ртути. Земли, соединяясь с водой, образуют соли и «первобытную кислоту», придающую кислотные свойства веществам, в которых она находится (Меншуткин, 1937). Теоретическая материализация сложных веществ вела от алхимии (науки о трансмутации, обыкновенно, одних металлов в другие) к химии (науке о разложении сложных веществ на истинные элементы, далее неделимые).

Флогистон также понимался в качестве материального источника горючести, как элемент («принцип») горючих тел; при горении вещества он должен выделяться в воздух. Заметим, что Шталь в ряде случаях говорил о флогистоне как о нематериальном начале (Меншуткин, 1937). Поэтому шталевское понятие «принципа» ближе по значению к его использованию в наши дни: принцип есть отношение, связывающее элементы вещества. Позже, начиная, по-видимому, с профессора медицины в Галле Иоганна Юнкера (Johann Juncker, 1679— 1759) в флогистоне стали видеть вещество. Но это вещество отличалось странными свойствами. При его соединении с металлами, оно делает более легким результирующее вещество. При обжигании металлов, из которых, как считали, удаляется флогистон, вес металлов увеличивается, тогда как при восстановлении (металлизации), сопровождаемом вхождением флогистона в металл, вес последнего уменьшается. Поэтому Юнкер стал говорить об «абсолютной легкости» флогистона, понимаемой в значении его отрицательного веса. Не все придерживались такого мнения. Так, английский химик и врач Дж. Май-ов (John Mayow, 1641-1679), первым показавший близость процессов горения и дыхания, а до него французский химик Жан Рей (Jean Rey, 1583 [2]-1645), один из тех, кто принимал закон сохранения массы, связывали увеличение веса обжигаемых металлов с поглощением воздуха, что впоследствии подтвердилось. Выдающийся английский ученый и богослов Роберт Бойль (Robert Boyle, 1643-1679) доказал это точными опытами, но при этом говорил о материи пламени. Об особых частицах огня говорили немецкий иатрохимик Отто Тахениус (Otto Tachenius, 16207-1699), французский врач и химик Лемери (Nicolas Lemery, 1645-1715) и профессор медицины и химии Лейденского университета Герман Бургав (Hermann Boerhave, 1663-1738).

Революция в химии, начатая Лавуазье, была связана с реорганизацией этой отрасли знания в эмпирическую науку, переходом от умозрительных построений, унаследованных от алхимии, в область точных и строгих, эмпирически проверяемых исследований. Лавуазье ввел понятие химического элемента через его эмпирическое определение. В предисловии к своему знаменитому учебнику Traite Elementaire de Chimie (1789, p. xxiv) он писал: «…мы применяем термин элементы, или принципы (principes) тел, чтобы выразить (в этом понятии) нашу идею конечного пункта, которого мы способны достичь в нашем анализе; мы должны допустить в качестве элементов, любые субстанции, на которые мы способны разложить тела всеми допустимыми способами». С эмпирической точки зрения такого элемента как флогистон нет, но есть кислород, который обеспечивает горение тел. При горении кислород поглощается. Следует отметить, что принципы в этом определении рассматриваются в качестве элементов, из которых построены тела.

Ламарк, безусловно, не понял революционного значения работ Лавуазье. Но вряд ли стоит ставить это ему в вину. Все не так просто. Вот, что писал Дмитрий Иванович Менделеев (1834-1907) в своих Основах химии (1889, с. 14): «Теплоту, свет, магнетизм и электричество объясняли особыми невесомыми жидкостями. В этом смысле учение Сталя отвечает вполне духу его времени. Если на теплоту ныне смотрят как на движение, энергию, то и флогистон должно рассматривать в этом смысле. Действительно при горении, наир., угля выделяется теплота и энергия, а не присоединяются, хотя кислород присоединяется к углю. Следовательно, учение Сталя заключает в себе, в сущности, правдивое представление о выделении энергии, но, конечно, это выделение есть только следствие происходящего соединения». О том же, по существу, писал Ламарк (Lamarck, 1797, параграф 206): «Когда мы оказываемся на каком-то расстоянии от очага, содержащего вещества; например, перед камином, в котором есть хороший огонь, или по соседству с большим огнем, зажженным на открытом воздухе, мы чувствуем, как нас пронизывает особое вещество, распространяющееся от горящего очага, как оно разливается со всех сторон, и существенно сказывается на всех телах, которые оно пронизывает». Это вещество, как в следующем предложении пояснил Ламарк, есть калорийный огонь (feu calorique), т.е. теплород. В Traite Elementaire de Chimie (1789, p. 192) среди 23 выделенных элементов в группу газов Лавуазье включил свет (lumiure) и теплород (calorique, или старые названия: fluide igne, matiere du feu & de la chaleut, principe de la chaleut). Теплород, вещество теплоты он определял «как реальную и материальную субстанцию или очень тонкий флюид, постепенно распространяющийся между молекулами любых тел, отделяя их (молекулы) друг от друга». Ламарк и Лавуазье, по существу, говорили об одном и том же. В отличие от Лавуазье Ламарк подчеркивал другой аспект проблемы, на которой обратил внимание Д.И. Менделеев – теплота выделяется, но в результате процессов окисления. Ламарк долгое время говорил, что «oxigene пневматических химиков отвлеченное понятие, что химики его никогда не видели».

Но не только один Ламарк так думал. Напомним, что теории флогистона придерживался до самой своей смерти английский теолог, выдающийся ученый и политический деятель Джозеф Пристли (Joseph Priestley, 1733-1804). Причем Пристли исходил в своих выводах из тех же самых экспериментов, на основании которых Лавуазье отверг теорию флогистона. Оба показали, что в атмосфере газа, выделяющегося при нагревании красной окиси ртути, свеча горит лучше, чем в атмосфере обычного воздуха. Пристли сделал заключение, что этот газ (названный впоследствии кислородом) есть тот же воздух, но без флогистона, который интенсивно поглощается дефлогистированным воздухом во время горения. Эту ситуацию неопределенности в умах химиков прояснил Фуркруа: «Соглашаясь с основой его (Лавуазье) опытов, – говорил он – химики еще не отказались от флогистона, и теория, которой они следовали, была более или менее вынужденным согласованием теории Шталя с действием воздуха. Для здравых умов это было нечто вроде нейтралитета, сопротивлявшегося не открытиям, но полному ниспровержению прежних представлений; эта мудрая партия ожидала, чтобы принять полную перемену, еще более решительной победы» (с. 59). Но как раз ее еще пока не было. Лавуазье, используя понятийный язык сторонников флогистона, описал кислород как источник, начало (principe) кислотности, который должен присутствовать во всех кислотах. Это нашло отражение в самом названии кислорода (рождающий кислоту), данное Лавуазье. Вот, что он писал: «Основной части воздуха, годного для дыхания, мы дали имя oxygene, производя его от греческих слов окислый, и ycivopai, рождаю, так как, в самом деле, одно из главных свойств этой основы заключается в образовании кислот при соединении с веществами» (цит. по: Менье, 1926, с. 175). Выдающийся английский химик, изобретатель безопасной рудничной лампы Гемфри Дэви (Humphrey Davy, 1778— 1829) в 1810 г. показал, что соляная кислота (НС1) не содержит кислорода. Не содержат его и плавиковая кислота. Кислоты в понимании Лавуазье соответствуют ангидридам. По поводу своего открытия Дэви, с симпатией относившийся к теории флогистона, сказал: «…будущие открытия… полностью уничтожат заслуги недавних улучшений пневматической химии и вернут нас снова к доктрине флогистона» (цит. по: Labinger, Weininger, 2005, р. 1918).

По этому поводу прекрасно выразился о сторонниках теории флогистона, сам Лавуазье в работе «Размышления о флогистоне», написанной в 1783 г.: «Я не жду, что мои взгляды будут сразу приняты; человеческий ум привыкает видеть вещи определенным образом, и те, кто в течение части своего поприща рассматривали природу с известной точки зрения, обращаются лишь с трудом к новым представлениям; итак, дело времени подтвердить или опровергнуть выставленные мною мнения».

Пневматическая химия Лавуазье лишала витализм материальной основы. Органическое вещество, коль скоро из него изгонялся флогистон, имело химическую основу из четырех главных элементов – углерода, кислорода, водорода и азота. Именно это обстоятельство – сведение жизни к химии, вызвало неприятие многими натуралистами, в том числе Ламарком, идей Лавуазье. Критика Ламарка не была отвлеченной. Она часто инициировалась проблемами биологии, анализом которых занимался Лавуазье как химик. Когда Лавуазье говорил, что дыхание с химической точки зрения является горением, то для большинства это трудно было принять. Среди критиков Лавуазье поначалу был и выдающийся немецкий естествоиспытатель Александр Гумбольдт (Friedrich Wilhelm Heinrich Alexander von Humboldt, 1769-1859), вступивший по этому поводу в полемику с Фуркруа. Но после посещения лаборатории Фуркруа и ознакомления с соответствующими опытами Гумбольдт безоговорочно изменил свое мнение и принял положения пневматической химии.

Важно также подчеркнуть, что взгляды Ламарка на проблемы химии и физики не были абсурдными, как пытались их представить позже, в частности Кювье. В целом они получили одобрение со стороны ряда ученых. В частности, Ламарк был поддержан натуралистом, активно работавшим в минералогии, геологии и палеонтологии Деламетри (Jean-Claude Delametherie, 1743-1817), который считал незаконным применение химического анализа к объяснению явлений жизни. Деламетри с 1789 по 1803 г. выпускал журнал Observations sur la physique (c 1794 г. под названием Journal dephysique), в котором публиковал работы противников пневматической химии. Сторонники Лавуазье печатались в журнале Annales de chimie. В 1799 г. Деламетри опубликовал трактат Ламарка Memoire sur la matiere du feu, considere comme un instrument chimique dans les analyses (Journal de Physique, 5: 345-361).

В своей критике Лавуазье Ламарк исходил из своего собственного видения проблем, которые не повторяли полностью положения теории флогистона. Более того, его размышления следует оценивать как попытку дальнейшего развития теории флогистона. Это хорошо видно, если проанализировать его более поздние работы, опубликованные в 1797 и 1799 гг. Важно еще раз подчеркнуть, что Ламарк выступает в этих сочинениях прежде всего как биолог и его критика была направлена против попыток сведения биологии к химии; в центре его внимания организмы, физическую и химическую природу которых он и обсуждает. Независимо от того, насколько прав Ламарк – это безусловно очень цельный подход: дать не только биологическую характеристику организмов, но и обсудить физико-химические основы жизни.

Теория флогистона по мере роста химических знаний все чаще сталкивалась с противоречиями. Это побуждало ученых как-то менять первоначальный каркас учения. В этом отношении Ламарк выступил с кардинальным решением, полностью отвергнув теории флогистона и предложив взамен новую концепцию вещества, дающую с единых позиций объяснение физическим и химическим явлениям, которые до этого рассматривались в качестве независимых. Понимая, что его, выступающего с жесткой критикой новой химии Лавуазье, могли счесть сторонником устаревшей теории флогистона, Ламарк в работе 1794 г. специально подчеркнул свою позицию по этому вопросу: «Более того, – писал он – я гарантирую, что [моя теория] совсем не является теорией флогистона, которую я не принял в той форме, в которой она существует» (цит. по: Corsi, 1988, р. 49).

В центре этой теории находится понятие огня (feu). Огонь не просто одна из стихий древних, но является ключевой составляющей тел, а в форме эфирного огня (feu еthеrе) выступает той силой, которая меняет тела. По Ламарку (Lamarck, 1797, параграф 161 (3)), «Огонь входит как конститутивный принцип (principe constituant) во все органические тела и в большую часть ископаемых». В телах он существует в форме фиксированного огня (feu fixе), но при подходящих условиях может переходить в активные состояния двух взаимоисключающих форм – углеродистого огня (feu carbonique), обеспечивающего горение, и кислотного огня (feu acidifique), затрудняющего горение, но способствующего растворению вещества, feu acidifique лежит в основе химических превращений. Кроме того, существует теплородный огонь (feu calorique), связанный с отдачей теплоты; наконец эфирный огонь (feu еthеrе), проявляет себя в явлениях звука, электричества и магнетизма. Таким образом, Ламарк выделяет пять форм огня: feu еthеrе и feu fixе, feu carbonique, feu acidifique и feu calorique. Подробнее об этом мы будем говорить в гл. 3 при анализе ламарковского понятия объекта. Здесь же ограничимся несколькими замечаниями.

Как было сказано, при обосновании своей теории вещества, Ламарк выступил против концепции флогистона, о чем он прямо говорит в работе 1797 г. (параграф 168):

«Этот фиксированный огонъ(feu fixе), рассматривавшийся в различные времена (terns) и при различных обстоятельствах, дал повод к установлению

флогистона (phlogistique),

принципа горючести (du principe inflammable),

углерода,

азота,

водорода

химиков. Нет сомнения, что придет время и все эти наименования, вводящие в заблуждение в том, что они, будто бы, обозначают различные вещества, будут стерты и отменены трудами химии; материя дифференцируется, главным образом, сообразно сущности того или иного огня».

Под l’air inflammable (горючим воздухом) во времена Лавуазье понимали водород. Но водород в данном Ламарком списке фиктивных элементов уже присутствует. Поэтому принцип горючести, скорее всего, соответствует калорийному огню Ламарка. У Ламарка теплородный огонь (feu calorique) не является элементом, но представляет собой конститутивный принцип, определяющий специфику существенных молекул (molеcules essentielles) (см. главу 3). Напротив, в системе Лавуазье, как было сказано, теплород (calorique) являлся простым элементом. Ламарк в этом плане был ближе к точке зрения современной физики, чем Лавуазье. В то же время позиция Ламарка отличалась от взглядов ученых, видевших в теплоте результат движения материальных частиц. Среди этих первопроходцев следует назвать нашего выдающегося ученого-энциклопедиста Михаила Васильевича Ломоносова (1711-1765). По Ламарку, теплород, как и другие формы огня, был движением особых частиц, отличных от химических простых веществ. Аналогом ламарковского эфирного огня является ньютоновский эфир (Lamarck, 1799). Но у Ньютона (Sir Isaac Newton, 1642-1727) эфир это упругая и разреженная среда наподобие воздуха, но более тонкого, в которой пребывает наш Мир. Эфир у Ньютона не способен к превращениям. У Ламарка эфирный огонь (feu еthеrе) это поток тончайших частиц, пронизывающих тела, в том числе и воздух, и способных при прохождении через тела превращаться в другие формы огня. Д.И. Менделеев относил эфирные частицы к химическим элементам и под именем ньютония зарезервировал для них место в своей Периодической системе элементов на пересечении нулевой группы и нулевого ряда. Он предполагал, что ньютоний должен иметь вес, значительно меньший, чем у водорода (Менделеев, 1910; С. Вавилов, 1945). М.В. Ломоносов признавал эфирные частицы в качестве материального источника гравитации в рамках концепции, близкой по содержанию к кинетической теории гравитации женевского физика Жоржа-Луи Лесажа (Georges-Louis Le Sage, 1724-1803). Мы вернемся к этому вопросу в третьей главе.

Помимо флогистона и принципа горючести в списке фиктивных элементов упомянуты реальные химические элементы – углерод, азот, водород, а в другом месте (параграф 140; см. главу 3) кислород. Отрицание Ламарком реального статуса кислорода (дефлогистированного воздуха сторонников теории флогистона), видимо, было воспринято его современниками, как защита реального существования флогистона. На самом деле, как мы видим, это не так.

Безусловно, физическая картина мира, как она дана Ламарком, носила во многом натурфилософский характер, и это входило в прямое противоречие с тем, что химия в его время уже оформилась как точная эмпирическая наука. Некоторые авторы думают, что различные типы огня соответствуют разным формам энергии. Действительно, основания для такого вывода есть, поскольку некоторые положения ламарковской теории огня можно интерпретировать в понятии перехода скрытой (потенциальной) энергии в форме feu fixе в другие ее активные формы. Но эта интерпретация оставляет без обсуждения эфирный огонь, который, по Ламарку, составляет основу всех других форм огня.

Ламарк, безусловно, ошибался, считая газы конститутивными принципами строения вещества. Надо, однако, сказать, что эти ошибочные воззрения на природу газов были им вскоре оставлены и уже в следующем XIX веке он к этим своим заблуждениям не возвращался. Более того, сами газы он рассматривал в качестве элементов. Например, в Философии зоологии Ламарк (1955, с. 503) писал: «Я знаю, что воздух состоит из кислорода и азота и что между их частицами содержится теплород… (с. 504). По-видимому, есть основание думать, что, поглощая кислород из воздуха, кровь находит одно из необходимых условий для своего восстановления». В более позднем Аналитическом обзоре знаний (Арепщ analytique des connaissances humaines avec des divisions et des reflexions tendant a montrer leur degre der certitude, leur source, leurs branches principals[6 - Рукопись, которая частично была опубликована в: Lamarck manuscripts at Harward (W.M. Wheeler, Th. Barbour [eds]). Cambridge, Mass.: Harward Univ.Press. 1933. XXXI. 202 p. Полностью рукопись была опубликована в русском переводе: Ламарк, 1959, с. 593-673.]) Ламарк обсуждает свойства наиболее известных газов, отмечая, наряду с атмосферным воздухом (смесь кислорода и азота) и углекислым газом (соединение кислорода с углеродом), такие элементы как кислород, водород и азот. Приняв новую химию, Ламарк оставил свои во многом умозрительные построения относительно тех воплощений огня, которые, как казалось Ламарку, объясняют химическую природу веществ.

1.4. Метеорология и гидрогеология

Еще более неудачными в глазах современников казались работы Ламарка по метеорологии. Но здесь существенную роль играли политические мотивы. Свято веря в закономерный характер природных процессов, Ламарк пытался их выявить во всем, в том числе и в погодных явлениях. Он, в частности, предположил, что фазы луны и ее положение относительно эклиптики можно использовать для предсказания погоды. В 1798 г. он опубликовал трактат «О влиянии луны на земную атмосферу» (De l’influence de la lune sur Г atmosphere terrestre, Journal de Physique, de chimie, d’histoire naturelle et des arts, (1798), XLVI, 428-435). C 1799 г. им издается «Метеорологический ежегодник» (Annuaire meteorologique), a c 1800 г. по распоряжению министра внутренних дел известного прикладного химика Шапталь де Шантелу (Jean-Antoine Claude, comte Chaptal de Chanteloup, 1756-1832) к нему стали стекаться метеорологические данные по Франции, которые Ламарк обрабатывал с целью составления прогнозов. Всего им было издано 11 выпусков. Это было исключительно важное издание, поскольку в нем фиксировались и описывались периодические явления в природе: восход и заход солнца, фазы луны, сроки цветения растений, прилета птиц, начало и окончание полевых работ и т.д. Вместе с этими, безусловно, важными и интересными фенологическими данными Ламарк имел неосторожность публиковать прогнозы погоды, увязывая их с положением луны. Что луна и другие небесные светила должны как-то влиять на погоду, это следовало из развиваемой Ламарком концепции вещества. На все объекты, в том числе и на землю, действует непрерывный поток эфирного огня. Изменения положения светил будут определенным образом и с определенной регулярностью изменять эфирный поток, что должно найти отражение в земных процессах, включая погодные явления.

Ламарк неоднократно оговаривал вероятностный характер своих прогнозов. Но читающей публикой – а издание было рассчитано на широкий круг читателей – эти прогнозы воспринимались как астрологические предсказания и этим определялся первоначальный небывалый успех издания. К сожалению – и этого следовало ожидать – большинство прогнозов были неудачными, на что Ламарку указывали многие, в том числе выдающийся астроном и математик Пьер Симон Лаплас (Pierre-Simon, marquis de Laplace, 1749-1827) и профессиональный метеоролог Котт (Pere Louis Cotte, 1740-1815), автор Traite de meteorologie (Paris, 1774). Последний ежегодно разбирал ламарковские прогнозы в «Журнале физики», показывая их несостоятельность. Дело с неудачными прогнозами дошло до того, что Наполеон на одном из официальных приемов устроил за них разнос Ламарку (подробнее см. Карпов, 1935), после чего тому пришлось забросить метеорологию. Последнее издание «Метеорологического ежегодника» (11-й том) вышло в 1810 г. Не исключено, что действительные причины закрытия Annuaire meteorologique имели политические корни. Дело в том, что, упорядочив работу метеорологической службы Франции, Ламарк предпринял шаги по организации метеорологических наблюдений в других странах континентальной Европы (в частности, в Германии и России) с возможностью обмена метеорологическими данными. Возможно, что это послужило основанием для Наполеона запретить публикацию метеорологических Correspondence по Франции.

В 1802 г. Ламарк дал первую классификацию облаков, выделив девять их типов (см. Пузанов, 1947; Blanchet, 2006). К сожалению, эта его пионерская работа не была востребована во Франции и не имела продолжения. Не была она отмечена и за рубежом, возможно по причине публикации ее в Annuaire meteorologique, не вызывавшего большого доверия в научных кругах из-за астрологических данных. Отцом метеорологии стал английский химик Говард (Гике Howard, 1772-1864), опубликовавший Опыт об изменении облаков (Essay on the Modification of Clouds, 1803) на один год позже Ламарка.

Более успешными (в плане оценки современниками) оказались изыскания Ламарка в области геологии и смежных дисциплин. В январе 1802 г. (по другим данным в декабре 1801 г.) Ламарк на собственные средства (поэтому малым тиражом) издал большой труд под названием «Гидрогеология» с подзаголовком, отражающим две его ключевые идеи: «Исследования влияния, оказываемого водой на поверхность земного шара, причин существования морских бассейнов, их перемещения и последовательного появления в различных точках Земли, наконец, перемен, которые происходят на поверхности Земли под влиянием живых тел» (Hydrogеologie, ou Recherches sur l’influence qu’ont les eaux sur la surface du globe terrestre; sur les causes de l’existence du bassin des mers, de son dеplacement et de son transport successif sur les diffеrens points de la surface du globe; enfin sur les changemens que les corps vivans exercent sur la nature et l’еtat de cette surface)(см. подробнее: Гиляров, 1999). В книге Ламарк рассматривает эволюцию земной поверхности. Согласно развиваемым им взглядам, в истории земли не было глобальных катастроф. Лик земли изменялся медленно, главным образом, под влиянием морских и пресных вод. В результате действия приливов, а также дождей и рек, там, где ранее была суша, появлялось море, на месте морей возникали материки. Впоследствии Кювье ([ 1818] 1937), много сделавший для пропаганды идеи существования в истории земли глобальных катастроф, высмеял ламарковские геологические взгляды: «Безграничное время, которое играет такую роль в религии магов, играет не менее важную роль во всей этой физике г. Ламарка» (цит. по Карпов, 1935, с. СХХШ). На этом же он заострил внимание после смерти Ламарка в посвященном ему «Похвальном слове» (см. дальше). В связи со сказанным, отметим следующий момент. Ламарк неоднократно подчеркивал, что естественные процессы идут необычайно медленно: капля точит камень. Кювье в этом ламарковском доводе увидел лишь уход от решения проблемы. Точно также поступали впоследствии противники Ламарка, упрекая его сторонников в использовании фактора времени при рассмотрении ламарковских механизмов наследования. Утверждалось, что эти механизмы невозможно проверить, если постулировать, как это делают ламаркисты, что процессы приспособления для своей актуализации требуют длительного времени.

Гидрогеология Ламарка не часть геологии; она шире и охватывала изучение суши (литосферу) и водных масс (гидросферу). Кроме того, важную роль играют, по Ламарку, живые организмы. Если физические силы разлагают сложные вещества земной коры до простых, то организмы осуществляют обратный процесс восстановления сложных веществ из простых (см. подробнее Гиляров, 1999; Захваткин, 2003). Эти процессы Ламарк рассматривал как ведущие в эволюционной истории Земли. Ламарку ставился упрек, что он видел в физических силах лишь деструктивное начало. Эту точку зрения следует пересмотреть. Если Ламарк придерживался мнения о каждодневном самозарождения живого, то, следовательно, он должен был предполагать возможность того, что и неживая природа способна строить сложные вещества из простых.

В «Гидрогеологии» Ламарк, по существу, говорил о биогеохимических циклах, в которых воде и организмам отведена решающая роль. «Hydrogeologie» Ламарка (1802), «Biosphere» В.И. Вернадского (1926, Vernadsky, 1929), «Gaia» (Гайя) Лавлокка (Lovelock, 1979) – вот главные этапы развития представлений о биогеоценотическом единстве Земли (Ghilarov, 1998).

«Гидрогеология» составляла часть более общей дисциплины – (земной физики), которая включала еще две частные по отношению к ней науки: биологию – науку о живых организмах (термин биология был впервые введен Ламарком в «Гидрогеологии») и метеорологию – науку, изучающую атмосферу.

«Гидрогеология» Ламарка нашла заинтересованного читателя. Хотя ее тираж был мизерным, да и тот не был реализован полностью при жизни Ламарка, если судить по найденным после его смерти экземплярам, тем не менее она была переведена в 1805 г. на немецкий язык. Ее главное значение в том что, рассматриваемые в ней процессы прямо указывали на эволюцию. Поэтому она была для Ламарка тем же, чем для Дарвина стала «Геология» Лайеля. Лайель знал «Гидрогеологию» Ламарка и давал ей высокую оценку. Надо думать, что знакомство с ней и для Лайеля не прошло бесследно и имело эвристические последствия. Академик В.Л. Комаров (1935, с. XXIII), говоря о «Гидрогеологии» Ламарка, заключил: «Таким образом, можно сказать с уверенностью, что, прежде чем выработать эволюционное учение, Ламарк утвердился в позитивном и даже материалистическом взгляде на мир. Кроме того, он пришел к учению об историческом развитии лика земли; о крупных постепенных изменениях в положении материков и морей, влекущих за собой и крупные изменения климата. В переменной среде переменны и организмы».

Бухардт (Burkhardt, 1977), изучив произведения современников Ламарка, высказал мнение, что тот не был оригинален и многие идеи, высказанные им, были почерпнуты у Бюффона, Брюгьера, Беме, Добантона. О значении воды в формировании лика Земли писали Бюффон и известный химик и фармацевт Беме (Antoine Вашпё, 1728-1804), читал в своих лекциях Добантон. Друг Ламарка, рано умерший Брюгьер говорил о значении ископаемых беспозвоночных как важнейшего геологического фактора. Он же скептически относился к возможности вымирания видов. Для Ламарка возраст Земли казался «почти неисчислимым», охватывающим «тысячи или даже миллионы столетий». Сходные мысли выражали многие из окружения Ламарка, например, минералог Николя Десмарет (Nicolas Desmarest, 1725-1815), который говорил: «Время является великим тружеником, которое ничего не может сохранить, которое меняет постепенно облик всех наших континентов, оно ежедневно ведет свою работу посредством деструктивных элементов…» (цит. по: Burkhardt, 1977, р. 111). О том же говорили Сэн-Фонд, Брюгьер и другие.

То, о чем пишет Бухардт, в этом нет ничего удивительного. Так и должно быть: в одном коллективе обсуждаются общие идеи, тем более, что многие из них вели свое начало от Бюффона, наставника большинства из тех, с кем общался Ламарк. Ламарк осуществил синтез идей, почерпнутых им из книг, но более из их обсуждений на встречах со своими коллегами.

1.5. Зоологические исследования

После вступления на зоологическую кафедру Ламарк уже не мог уделять много внимания ботанике. Тем не менее в 1803 г. он начал издавать Естественную историю растений (Histoire naturelle des vegetaux, classes par families). Ламарк был автором только первых двух томов, в которых он излагал историю ботаники и ее основные принципы. Большая часть содержания этих томов слово в слово повторяет содержание соответствующих статей в Encyclopedie methodique, опубликованных 15-20 лет тому назад. Но есть и принципиальные изменения. Ламарк впервые рассматривает разнообразие растений в рамках градационной эволюционной парадигмы. Тайнобрачных он делит на два класса – Aphyllees и Cryptospermes (Stafleu, 1971). Следующие 13 томов «Естественной истории растений» были написаны Мирбелем (Charles-Fran?ois Brisseau de Mirbell, 1776–1854). Отметим, что Мирбель вместе с Джоликлерком (Nicolas Jolyclerc, 1746–1817) параллельно работал над 18-томной Histoire naturelle, gеnеrale et particuli?re, des plantes (1802–1806) и обе эти многотомные серии были частями новой Suites а Buffon – дополнениями к незаконченной бюффоновской Естественной истории (Histoire naturelle gеnеrale et particuli?re) (Stevens, 1994).

C 1794 г. Ламарк, как отметил он сам в «Философии зоологии», приступил к чтению лекций по низшим животным. Ученик и преемник Ламарка выдающийся зоолог Блэнвилль (Henri-Marie Ducrotay de Blainville, 1770-1850) определяет, скорее всего ошибочно, эту дату начала чтения Ламарком лекций 1796 г. О самих лекциях Блэнвилль сообщает следующее (цит. по Карпов, 1935, с. CXXIV-CXXV): «У него было правило начинать лекции вступительным рассуждением, в котором он показывал, откуда вела начало излагаемая ветвь науки; затем он приступал к предмету, давая характеристику систематических подразделений, классов, порядков, семейств, отделов и родов, установить которые он считал полезным; все это он писал и диктовал. То же делал он, доходя до видов. После этого он переходил к изустным более или менее подробным объяснениям, в которые включал до известной степени указания на организацию, нравы, привычки, иногда на практические применения; при этом показывая объекты». Курс зоологии беспозвоночных Ламарк читал в продолжении 25 лет. В числе слушателей лекций были прославившиеся впоследствии ученые итальянец Бонелли, помощник Латрейля по кафедре энтомологии Одуэн (Jean-Viktor Audouin, 1797-1841) и уже упоминавшийся Блэнвилль. Говорят, что лекции Ламарка посещали французские писатели Шарль Огустен Сент-Бёв (1804-1869) и Оноре де Бальзак (1799-1850).

В самом начале своей деятельности в области зоологии Ламарк предложил новое деление животных на две группы – позвоночных и беспозвоночных – взамен традиционного идущего от Аристотеля деления животных на имеющих кровь и бескровных. Кроме того, он объединил царства растений и животных в единую ветвь «живых организованных тел», противопоставив ее «безжизненным неорганическим телам», представленных линнеевским царством минералов (Ламарк, 1935, с. 83). Напомним, что Линней (Carl von Linne, 1707-1778) в первом издании Systema Naturae (1735 г.) ввел формальные названия Vege-tabile (также Plantarum, Plantae в значении «растение вообще») и Ani-malia для растений и животных соответственно. Грибы в его системе были отнесены к растениям, хотя какое-то время он склонялся к мнению о принадлежности грибов вместе с полипами к животным (Курсанов, 1940). В последующих изданиях (1766 г.) Линней дополнил систему третьим царством Lapides для минералов (подробнее см. Taylor, 2003). Трехцарственная система впервые была выдвинута в 1645 г. французским алхимиком Колезоном (Johannes (Jean) (Colles[s]on). Колезон известен как автор книги Ideeparfaite de laphilosophie hermetique, вышедшей в Париже в 1630 г. и впоследствии включенной в 6-й том уже упоминавшейся Theatrum Chemicum. Книга Колезона была переиздана в 1719 г. Для небесных тел Колезон ввел четвертое царство планет. Важно отметить, что для каждого из царств существуют высшие формы, показывающие тип идеального совершенства. Для животных, по мнению Колезона, высшей формой является человек, для растений – виноград, для минералов – золото, для небесных тел – солнце (Бернар, 1878).

По Линнею (1989, с. 9): «Камни растут. Растения растут и живут. Животные растут, живут и чувствуют». В отличие от камней животные и растения представляют мир живой природы. Но ранее в Systema naturae Линней дал иную характеристику камней (минералов). Минералы существуют (esse), растения живут (vivere), животные чувствуют (sentire) или в другом варианте: минералы существуют (Mineralia sunt), растения существуют и растут (Vegetalia sunt et crescunt), животные существуют, растут и чувствуют (Animalia sunt, crescunt et sentiunt). В русском издании Systema naturae (Линней, 1804, с. 3-4) камни характеризуются как «не живущие и не чувствующие… (и их) тела образуются по законам сродства». В то же время растения есть «тела орудные, живущие, не чувствующие, но только раздражительностью одаренные». Дополняя эту характеристику, Линней подчеркивает специфику жизни растения, которое «извлекает посредством всасывающих корней пищу…, а из воздуха вбирает оную посредством движущихся листьев», размножается «семенами, которые рассеиваются по определенным местам» (с. 4). Животные есть тела, «орудиями снабженные, живущие, чувствующие и произвольно движущиеся». И далее: «они дышат и размножаются яйцами».

В XIX веке с предложением выделить в самостоятельное царство людей выступили Эренберг (Christian Gottfried von Ehrenberg, 1795— 1876) в работе das Naturreich des Menschen (1935), сын знаменитого Етьена Жоффруа Сент-Илера известный зоолог Исидор Жоффруа Сент-Илер (Isidore Geoffroy Saint-Hilaire, 1805-1861), изложивший свои взгляды в первом томе трехтомного труда Histoire naturelle generate des regnes organiques (1854-1862, vol. 1, Pt. 2. P. 167), а также ученик Ламарка Блэнвилль (см. Бернар, 1878).

Название «Vegetabile» отражает суть растений: это – организмы, жизнь которых связана лишь с вегетативными функциями, т.е. с (органическим) ростом. Отсюда и наше название: растения – это те организмы, которые лишь растут (см. Тимирязев, 1920). Животные – это организмы, которые в дополнение к вегетативным функциям (вегетативной жизни), обладают животными функциями (животной жизнью), связанными со способностью чувствовать и двигаться.

Итак, Ламарк в противовес Линнею ввел понятие органической жизни, которая выражается в питании, развитии, способности воспроизводиться и в неизбежной смерти. «Можно поэтому утверждать, – говорил Ламарк (1935, с. 84) – что между неорганическими и живыми телами лежит огромная пропасть, не позволяющая ни расположить их в один ряд, ни связать переходом, что тщетно пытались сделать». Здесь Ламарк имеет в виду так называемые камнерастения (Lithophy-ta) – кораллы, в которых многие видели связующее звено между минералами и растениями. Минералы, по Ламарку, это другая область природы, не связанная с живыми существами.

В своей системе беспозвоночных Ламарк поначалу устанавливает пять классов (моллюски, насекомые, черви, иглокожие, полипы) вместо двух у Линнея (насекомые, черви). В последующем он добавляет классы ракообразных (1779 г.), паукообразных (1800 г.) и аннелид (1802 г.), выделенных из линнеевского класса Insecta, а также классы инфузорий (1807 г.), выделенных из полипов, и усоногих (1809). Таким образом, в Философии зоологии система беспозвоночных включала десять классов. До выхода Философии зоологии систематические сведения по беспозвоночным были суммированы Ламарком в объемном 452-страничном труде Система беспозвоночных животных, или общая картина классов, отрядов и родов этих животных, представляющая их существенные черты и их распределение на основании разбора их естественных отношений и их организации, в порядке расположения, установленном в галереях Музея естественной истории для их консервированных остатков, изданном в 1801 г. Через семь лет после вступления в должность зоолога Ламарк стал корифеем в области изучения беспозвоночных животных.

Наконец, в семитомной Histoire naturelle des animaux sans vertebres (1815-1822) система беспозвоночных включала 12 классов. Кювье во втором издании Le Regne Animal (с 1829 г.) рассматривал 15 классов беспозвоночных (превышение за счет большего дробления моллюсков и выделения брахиопод и туникат). Система Кювье, правда, не объединяла эти классы в группу беспозвоночных, таксономически противопоставляемую позвоночным. Животных Кювье делил на четыре ветви (embranchements) – Animalia Vertebrata, Animalia Mollusca, Animalia Articulata, Animalia Radiata. Сравнительный анализ классификаций животных этих и других авторов тех лет дал Агассиц (Louis Agassiz, 1807-1873) в Essay on classification ([1857] 1962)

В свое время в Flore frangoise (первое изание, напомним, вышло в 1778 г.) Ламарк упорядочил растения в естественную серию (см. ламарковскую таблицу в Stevens, 1994, р. 19), в которой самое низшее положение занимали агариковые грибы, а связующим звеном между грибами и низшими водорослями (в частности, Byssus=Trentepohlia) были приняты мукоровые грибы. Естественные серии в то время строились, прежде всего, с целью обоснования тезиса о прогрессивном развертывании жизни и связанным с этим постепенном повышении организации, достигающей у человека как венца творения наивысшего значения.

Зоологический период научной деятельности Ламарка связан с радикальным изменением его взглядов на естественные серии. Во-первых, претворяя эволюционную идею в жизнь, Ламарк стал читать серии снизу вверх, т.е. от исходных форм к высшим. Он, по выражению Г. Бэтсона (Bateson, 1972), «поставл таксономию с головы на ноги». Во-вторых, как зоолог Ламарк уже не ищет связующих звеньев между растениями и животными. Между ними (Ламарк, 1935, с. 84-85) «нет настоящей переходной ступени, и следовательно не бывает ни животных-растений (что выражается словом зоофит), ни растений-животных».
<< 1 2 3 4 5 6 ... 10 >>
На страницу:
2 из 10