Оценить:
 Рейтинг: 0

«Философия зоологии» Жана Батиста Ламарка: взгляд из XXI века

Год написания книги
2009
<< 1 ... 6 7 8 9 10
На страницу:
10 из 10
Настройки чтения
Размер шрифта
Высота строк
Поля

При формировании энергетической организации вокруг мембран действует так называемый принцип соединения подобного с подобным (like-likes-like). Внутриклеточная вода, возможно, также находится в особом фазовом состоянии (Ling, 2001).

Таким образом, жизнь, по Ламарку, поддерживается за счет действия трех факторов: потоков вещества и энергии (у Ламарка в качестве источника энергии выступал теплород), а также движения электрического флюида. Насколько я могу судить, о третьей, как теперь ясно, важнейшей причине жизни кроме Ламарка больше никто не говорил. Важно также обратить внимание и на такой момент, подчеркнутый Ламарком: внутриорганизменные флюиды зависят от внешних источников энергии (рис. 3.2), что особенно показательно в процессах накопления энергии в воде, омывающей мембрану.

Резюмируем позицию Ламарка. Метаболические процессы являются ключевой особенностью живых систем. Три материальных условия определяют, по Ламарку, метаболическую активность и, следовательно, жизнь – поступление в организм доступных энергии, вещества и электрических флюидов.

В современных концепциях это нашло выражение в классификации метаболических типов питания по трем факторам. Метаболические процессы и, следовательно, сама жизнь поддерживается за счет поступления в организм 1) энергии, 2) соединений углерода, из которых строится тело, и 3) активных электронов, участвующих в различных реакциях.

Энергетические потребности организм в состоянии удовлетворить либо за счет солнечной радиации, либо за счет химической энергии, получаемой при окислении различных соединений. Сообразно этому различию, организмы делят на фототрофов и хемотрофов (греческое «trophe» означает пища).

Внешняя энергия, поступающая в организм, должна быть превращена в биохимически доступную для него форму. В химическом метаболизме изменение свободной энергии связано с движением электронов. Иными словами, энергетические потребности организма удовлетворяются в результате переноса электронов. Другой аспект метаболической активности организмов связан с их способностью запасать энергию, поступающую извне. Два основных способа накопления энергии были выработаны в процессе эволюции. Оба связанны с переходами электронов в окислительно-восстановительных реакциях, дополняемых в большинстве случаях сопряженным движением протонов через мембраны. В первом случае имеет место образование высокоэнергетических молекул, важнейшей из которых являются аденозин 5?-трифосфат (АТФ). Второй способ связан с накоплением энергии в электрохимической форме в виде градиента ионов между двумя поверхностями мембран (цитоплазматической либо внутриклеточных). Движение электронов на мембранах – важнейший элемент дыхательных (окислительных) и фотосинтетических (восстановительных) процессов.

Донором электрона могут быть как органические, так и неорганические соединения. Среди последних отметим молекулярный водород, сероводород, серу, аммиак, Mn

, Fe

, SO

. Сюда же следует отнести воду, показывающую восстановительные свойства при ее фотолитическом разложении в фотосинтезе и в процессах, имеющих место в околомембранной зоне. Организмы, использующие в качестве донора электронов органические вещества, называют органотрофами, те, что используют неорганические соединения, – литотрофами (греческое «litho» означает камень).

Необходимый углерод организмы могут получать из неорганических веществ или окисляя сложные органические соединения (т.е. такие вещества, которые содержат С-Н связи). В первом случае говорят об автотрофных, во втором о гетеротрофных организмах.

С учетом этих трех составляющих возможны восемь различных сочетаний, характеризующих организмы по метаболическим типам питания (Кондратьева, 1996). Однако в природе реализовано не более шести из них (пяти – по данным Madigan et al., 2000; семи – по данным Margulis et al., 1993; см. также Hoek et al., 1996; Barnes, 1998).

В четвертой главе второй части Философии зоологии Ламарк разбирает еще одно свойство животной и растительной жизни, которое можно связать с клеткой. Речь идет о ламарковском понятии «оргазма, или своего рода эретизма» – «состоянии, которое податливые внутренние части животных сохраняют до тех пор, пока они обладают жизнью» (Ламарк, 1955, с. 494). Ламарк связывал оргазм с особым типом чувствительности, которая не зависит от нервной системы и которая была названа скрытой физиологом Ришераном (В. A. Richerand, 1779-1840). «Вероятно, без оргазма (скрытой чувствительности) не могла бы быть выполнена ни одна жизненная функция» (с. 496). Эту скрытую чувствительность, очевидно, можно соотнести с клеточной чувствительностью, опосредуемой мембранными рецепторами.

Оргазм характерен как для животных, так и для растений. «Я называю животным оргазмом – писал Ламарк (с. 497) – то своеобразное состояние податливых частей живого животного, которое обусловливает во всех точках этих частей особое напряжение… Это напряжение.. . составляет то, что физиологи называют тонусом частей». В отношении растений Ламарк говорит с меньшей определенностью, но можно предположить, что он имел в виду состояние тургора. По смыслу тонус животных частей надо соотносить не с клеточной чувствительностью, как предполагал Ламарк, но с особым состоянием протоплазмы. У эвкариот клеточный тонус поддерживается давлением внутриклеточной воды и напряжением цитоскелета.

Итак, оргазм есть способность организма поддерживать напряжение, тонус своих частей. Причину оргазма Ламарк видел в теплороде, вырабатываемом организмом.

3.5. Голобиоз или генобиоз?

Ламарковский подход к феномену жизни прослеживается в современных концепциях голобиоза (см. Юшкин, 2002), согласно которым жизнь в форме обмена веществ исходно возникла внутри отграниченных от среды компартментов, вначале минеральных, позже фосфолипидных или внутри коацерватных капель. Сторонником последней точки зрения, много сделавшим для развития теории происхождения жизни, был Александр Иванович Опарин (1894-1980). Почти одновременно с ним и независимо от него с близкими идеями выступил Джон Холдейн (John Burdon Sanderson Haldane, 1892-1964). Оба исследователя исходили из предположения, что жизнь возникла в условиях восстановительной, практически бескислородной атмосферы, содержащей в основном водород, метан и аммиак. В таких условиях мог происходить органический синтез, как впоследствии экспериментально показал американский исследователь Миллер (Miller, 1953). Некоторые исследователи высказывали обоснованные возражения относительно возможности накопления в больших объемах метана и аммиака в результате полимеризации первого и разрушения второго под действием ультрафиолета. А без этих веществ синтез аминокислот из азота, углекислого газа и паров воды проблематичен.

По гипотезе А.И. Опарина ([1924] 1957) при повышении уровня белковоподобных веществ в древнем пребиотическом океане возможна их концентрация с образованием коллоидных (коацерватных) капель. Коацервация есть процесс отслаивания при подходящих условиях гидрофильных коллоидов (не обязательно белковых). Этот процесс отслаивания и агрегации коллоидов был детально изучен голландским химиком Бунгенберг-де-Ионгом (Bungenberg de Jong [Hendrik Gerard de Jong], 1893-1977). Коацерваты подобны клеткам в том, что способны избирательно ассимилировать необходимые вещества из внешней среды, и, как результат, расти и делиться по достижении критического размера. Коацерватные капли были отграничены от среды гидрофобной оболочкой, скорее всего липидными структурами, которые как раз и обладают избирательной и направленной проницаемостью.

Для голобиотических приближений основная трудность состоит в том, чтобы понять, как из смеси аминокислот могли возникнуть белки и каким образом они реплицировались, учитывая, что при превышении некоторого критического размера белки сворачиваются в глобулы. При подходящих условиях, в воде и при наличии глины, пиритов или других минералов в качестве катализаторов (способных исключить воду из поверхностных неровностей) возможно образование коротких пептидов. Длинные пептиды, названные протеноидами, удается получить нагревая сухие аминокислоты до температуры 150-180°С и удаляя воду (Fox, Dose, 1977). Эти термальные пептиды включали D- и L-изомеры аминокислот; лизин, глутамат и аспартат формировали более половины пептидных связей, что нехарактерно для естественных белков, не все связи аминокислот оказались пептидными. Благодаря пептидным связям белок способен сворачиваться в пространственную структуру – основное условие функциональности белка. Некоторые пептиды способны катализировать свою собственную конденсацию. Другая нерешенная проблема – происхождение простейшего организма. Считают, что переход от бактерии к человеку был менее глубоким, чем переход от аминокислот к бактерии.

Альтернативный подход – генобиоз – считает, что ключевым признаком жизни является матричный способ воспроизведения. Иными словами, жизнь возникла с появлением первого гена (Морган, 1927; Меллер, 1937). У истоков этого приближения лежат работы американского биохимика Леонарда Троланда (Leonard Troland, 1889-1932). Троланд (Troland, 1914, 1917) предположил, что жизнь началась со спонтанного синтеза каталитических молекул, которые были способны катализировать другие молекулы (гетерокатализ) и одновременно собственное образование (само- или автокатализ). Такие каталитические молекулы, видимо, соответствуют РНК. Чуть позже выдающийся американский генетик, работавший перед второй мировой войной в Советской России Герман Меллер (Herman Joseph Muller, 1890-1967) выдвинул идею «живых генов», способных мутировать и эволюционировать, с которых, по нему, началась жизнь (доложено на Ботаническом конгрессе в 1926 г.; опубликовано в 1929 г.). В обосновании концепции генобиоза много сделали Эйген (см. Эйген, Шустер, 1982), Докинз (1993; Dawkins, 1982), а из наших ученых Б.М. Медников (2005).

Структурные составляющие РНК сложнее синтезировать в пре-биотических условиях, чем аминокислоты. Особенно трудно синтезировать цитозин, который (наряду с рибозой) является крайне нестабильным.

Кернс-Смит (1985; Cairns-Smith, 1990) указал, что ДНК и РНК в современной жизни функционируют совместно с белками. Поэтому нуклеиновые кислоты не могли быть первыми репликаторами при становлении жизни. Таким исходным репликатором, по Кернс-Смиту, могли быть глины. Кристаллы глины способны воспроизводить свою структуру и при подходящих условиях, например, при периодическом высыхании глинистых грунтов могут с ветром переноситься на дальние расстояния, давая дочерние отложения глин. Если глины с определенной кристаллической структурой как-то меняют протекающие вокруг них естественные процессы, например, движение растворов, то аналогичные процессы будут иметь место и в местах отложения дочерних кристаллов, если тому будут позволять условия. Глины способны катализировать многие реакции органического синтеза и эта их способность может меняться при различных местных нарушениях структуры глин, которые в ряде случаев будут передаваться дочерним глинистым отложениям. Если некоторые глины катализируют образование органической молекулы, которая увеличивает скорость их размножения и распространения, то соответствующие кристаллы глины по функции будут подобны генам. Эти «глиняные гены» катализируют своего рода фенотип и, кроме того могут, подвергаться отбору. В последующем, по мнению Кернс-Смита, активность «глиняных генов» могла быть дополнена действием нуклеиновых кислот, которые постепенно перехватывали функцию производства фенотипа и в конечном итоге могли полностью вытеснить «глиняные гены» (теория генетического захвата).

В этих построениях, благожелательно воспринятых одним из наиболее авторитетных сторонников геноцентрического подхода Ричардом Докинзом (Dawkins, 2006), наиболее важный момент, касается понимания мутаций глиняных генов. Здесь не идет речь об отборе естественных видов глин; отбираются скорее аномалии, могущие возникнуть при случайных нарушениях процессов кристаллизации, например, в результате возникновения трещины, которая будет передаваться дочерним кристаллам. Докинз считает, что такого рода микродефекты на поверхности кристаллов при репликации последних могут накапливаться и составлять материальную основу для хранения генетической информации по типу лазерных дисков. Забегая вперед, скажем, что более подходящим биологическим аналогом лазерных дисков, накопителем и хранителем информации является клеточная мембрана с ее возможностями дифференциального возбуждения, распределенного во времени и в пространстве, тысяч интегральных белков.

3.6. Автопойез и размножение

Заканчивая свой анализ феномена жизни, Ламарк (1959, с. 65) рассмотрел вопрос относительно того, в каких конкретно функциях она проявляется. У организма он выделил две группы жизненных функций:

1. Функции питания, развития и сохранения индивидуума.

2. Функции воспроизведения и размножения.

Предваряя обсуждение, приведем данное самим Ламарком замечание. По его мнению, жизнь лишь проявляется через функции (в данном случае функции первой группы), но не равнозначна им. «Утверждают, – пояснял Ламарк (1959, с. 64-65, сноска) – что жизнь есть совокупность функций, но это ошибка; функции являются не чем иным, как проявлениями организации и ее частей. Поэтому ни жизнь, ни сама организация не являются и не могут быть функциями. Жизнь – есть причина (функций), а организация является лишь совокупностью средств, обусловливающих то, что выполняют функции». Жизнь, по Ламарку, есть причина, которая таким образом организует живые тела, что у них появляется функция. Функция, следовательно, выступает в качестве вторичного явления, тогда как жизнь по отношению к функции первична. Формально функция является предикативной характеристикой организма. Все вместе это означает, что жизнь для Ламарка является конструктивным понятием.

В основе первой группы функций, если следовать ламарковскому определению жизни, приведенному выше, и четвертому пункту, лежат жизненные процессы. Жизнь с этой точки зрения выражается в метаболизме в широком смысле слова, включая и поведение, и этот метаболизм, т.е. состояние жизни через вторую группу функций передается и воспроизводится в ряду последовательных поколений. Ламарк, таким образом, разграничивает явление жизни и процесс ее воспроизводства. Мотивы этого понятны. Если считать первую группу функций как составляющих основу жизни, то для продолжения жизни эти жизненные функции должны передаваться в ряду поколений. Если включить воспроизведение в понятие жизни, то мы не сможем, не нарушая логики, говорить о воспроизведении жизни. В этом случае понятие воспроизведения будет включать антиномичное воспроизведение самого себя.

Поэтому Ламарк был прав, разделив жизненные функции и функцию их воспроизведения.

Аналогичным образом, исключив феномен наследования, подходил к описанию жизни известный немецкий биолог Макс Гартман (Maximilian Hartmann, 1876-1962). В своем классическом руководстве Allgemeine Biologie (1925) он (Гартман, 1936, с. 21) связывал жизнь с «тремя группами процессов – обменом веществ и энергии, явлениями раздражения и смены формы…». Учитывая то, что жизнь может протекать только внутри клеток, Гартман дает следующее определение живых систем (с. 22). Они представляют собой «системы тел, состоящих из одной или многих (часто многих тысяч) клеток, в которых имеются налицо уже упомянутые три группы процессов – стационарные процессы обмена веществ и энергии, физиологические колебания этих стационарных процессов (явления раздражения) и прогрессирующие процессы смены формы».

Легко понять, почему Гартман исключил наследственность из признаков жизни. Если жизнь протекает внутри клеток, то воспроизведение последних составляет особый аспект существования организмов, который, к тому же, не является для них уникальным. Так, многие минералы, подобно растениям растут послойно, часто через матричный механизм роста. Они способны делиться, и давать новые, в том числе и измененные под действием среды кристаллические формы (Кернс-Смит, 1985; Юшкин, 2002).

Заметим, что в ламарковском определении жизни обменные процессы рассмотрены шире и включают не только движение вещества и энергии, но и поток флюидов. Явление раздражимости Ламарк понимает иначе, считая, что процессы, традиционно рассматриваемые под названием раздражимости, в корне отличны у растений и животных. По существу, ту же мысль высказывает и Гартман, о чем мы будем говорить в главе 10. О процессах смены формы Ламарк говорит в пункте 5 своего определения.

Итак, в своем определении Ламарк говорил о воспроизведении жизненных функций. Но функциями не исчерпывается природа организма. Организм может анализироваться со стороны, путем сравнения его признаков с признаками других организмов (предикативный аспект изучения), и изнутри, через изучение его строения и функций как автономно существующего объекта (конструктивный аспект изучения). Ламарк не вычленял эти аспекты, но более был склонен придерживаться конструктивного понимания организма.

В своем делении Ламарк по вполне понятным причинам не учел того факта, что воспроизводятся не только жизненные процессы (первая группа функций), но и фенотип во всем многообразии характерных для него признаков. В генетике в центре внимания оказалась наследственная передача признаков, которую удалось связать с матричным способом воспроизведения. Возможность и необходимость автономного воспроизведения жизненных функций генетика не признает. Считают (см., например, критические замечания Вольперта – Wolpert, 2002), что воспроизведение белков решает все вопросы строительства организма. Если синтезированы клеточные ингредиенты, то этого достаточно, чтобы они начали функционировать.

Не все разделяют эту точку зрения. Жизненные процессы несводимы полностью к передаче структурных особенностей через матричный аппарат уже по той причине, что они даются организму в готовом виде благодаря преемственности клеток. Напомним знаменитое положение Рудольфа Вирхова (Rudolf Ludwig Karl Virchow, 1821-1902): omnis cellula e cellula – клетка возникает только от клетки. Это означает, что материальным базисом, на котором воспроизводится клеточная жизнь, является сама клеточная жизнь. Клетка как действующая живая система задает, на наш взгляд, через различные конформационные механизмы функциональную (отвечающую неравновесному состоянию) структуру кодируемых аминокислотных последовательностей. В этом случае факторы, определяющие воспроизведение, могут быть разложены на две составляющие: связанные, во-первых, с синтезом необходимых веществ при главенствующем участии матричных процессов и, во-вторых, с функционализацией этих веществ, сообразно предшествующему функциональному состоянии клетки. Важность функциональной преемственности неявно отмечалась многими. Говорил о ней и Ламарк, например, в пятом параграфе своего определения жизни, в котором он касался смены жизненных состояний организма от младенческих лет до старости. Можно, следовательно, говорить о структурной и функциональной (организационной) составляющих воспроизведения, которые в клетке обеспечиваются разными механизмами. Есть ли данные, свидетельствующие об автономном воспроизведении жизненных функций? На наш взгляд, о такой возможности говорят длительные модификации.

Следовательно, ламарковскую схему деления жизненных функций мы можем переписать в следующем виде:

1. Функции питания, развития и сохранения индивидуума.

2а. Функция воспроизведения организации, связанная с принудительным преобразованием синтезируемых структур в элементы существующей организации и наделением их функциями первой группы.

2б. Функция структурного (матричного) воспроизведения.

Тема категоризации жизненных функций получила дальнейшее развитие в работах чилийского ученого Умберто Матураны и его ученика Ф.Х. Варелы (2001; Maturana, Varela, 1980), которые говорили о двух сторонах жизни – автопойезе и размножении. В понятии автопойеза (автопоэза) описываются автономные сущности, отделенные от среды своего обитания избирательно проницаемыми границами или барьерами, например, мембраной в случае клеток, и способные к метаболизму, т.е. к биохимическим процессам, которые поддерживают и продлевают их идентичность в меняющихся условиях среды (см. Lazcano, 2000). Кроме клеток и организмов автопойетическим целым является биосфера.

Автопойетические системы структурно открыты, т.е. способны пропускать в себя и через себя элементы внешнего мира, но организационно закрыты, т.е. в состоянии ограничивать влияние среды на свою работу. Кауфман (Kauffman, 2000, р.8; см. также р.72) назвал такие системы автономными деятельными объектами (агентами -agents), определяя их в качестве «физических систем, таких как бактерия, которые могут действовать в природе ради собственной пользы (behalf). Все свободно живущие клетки и организмы, очевидно, являются автономными агентами». Нам кажется, что не будет большой ошибкой, если расширить определение Кауфмана и видеть в живом организме деятельный объект, способный действовать по собственному усмотрению.

Автопойезу, очевидно, отвечают две первые группы функций, 1 и 2а. Возникает вопрос – в каком отношении находится автопойез к функции матричного воспроизведения (26)? Возможен троякий ответ: либо в автопойезе видеть надстройку над процессами размножения, либо воспроизведение считать функцией обмена веществом и энергией, либо, наконец, считать автопойез и матричное воспроизведение двумя независимо возникшими феноменами, которые благодаря мембранам смогли объединиться в единую систему жизни.

Первая возможность исключает автономную активность живых систем и, следовательно, не совместима с концепцией автопойеза. Вторая возможность такую активность предполагает и поэтому вполне соответствует позиции Ламарка. В качестве примера рассмотрим одно из недавних определений жизни (Segre, Lancet, 2004, р. 104). Согласно этим авторам, жизнь связана с «открытой системой, далекой от термодинамического равновесия, чьи линкерные (связанные) реакции организованы таким образом, что протекают в условиях гомеостаза и их результатом является самовоспроизведение». Конкретизируя это определение, авторы говорят о сложной сети взаимодействий, в которой каждый молекулярный вид «может быть в то же самое время субстратом, продуктом и катализатором в различных реакциях» (Kauffman, 1993), формируемая «сеть химических преобразований… показывает определенный уровень организации». При достаточно сложных сетях такая организация, рассматриваемая «с функциональной точки зрения предполагает существование двух фундаментальных свойств: во-первых, гомеостаз, т.е. способность системы поддерживать себя и поддерживать свою внутреннюю упорядоченность, несмотря на умеренные флуктуации средовых факторов (Dyson, 1985); во-вторых, внутренне связанное с первым условием самовоспроизведение, т.е. возможность замены молекулярных видов, которые в силу роста системы в общем размере и по массе окажутся в состоянии повышенной дисперсности. По разделении процесса это поддержание молекулярных концентраций во время роста приведет, в конечном счете, к дупликации системы».

В этом определении в центре внимания находится организационно замкнутое автокаталитическое множество белков, способных катализировать свое собственное производство (см. обсуждение проблемы замкнутости в более широком контексте в: Захваткин, 2003). Такие множества были экспериментально получены для белков (Lee et al., 1996) и ДНК (Sievers, Kiedrowski, 1994). Замкнутость автокаталитического множества означает, что образование любого пептида из такого множества катализируется другим членом данного множества. В таких множествах молекулы не воспроизводят сами себя, но само множество как целое воспроизводит себя (Kauffman et al, 2008). Подчеркнем, что речь идет о нематричном синтезе. В случае белков примеры такого нематричного синтеза, осуществляющегося в клетке, известны (Calvin, 1969; Dyson, 1985; Kauffman, 1993).

В связи с выделенной фразой не могу не привести вслед за Кауфманом с соавторами (Kauffman et al., 2008, р. 28) одну интересную мысль Канта (§ 65, с. 398-399), высказанную им в Критике способности суждения. Надо отдать должное проницательности Канта, прочувствовавшего столь непростую возможность: объект как целое обладает способностью к самовоспроизведению, а его элементы этой способности лишены: «… органическое тело не есть только машина, отличающаяся лишь движущей силой, оно обладает и формирующей силой самовоспроизведения, которую оно передает своим элементам, не имеющим ее; оно, фактически, организует их и это нельзя объяснить одной только механической способностью к движению» (перевод дан в нашей редакции; выделено нами).

Третья возможность предполагает коэволюцию и симбиоз этих двух пред форм жизни, т.е. совместную эволюция в рамках единого целого автокаталитической системы и системы с матричным типом воспроизведения (Dyson, 1985; Kauffman, 1993). Тогда вопрос относительно того, что является первичным – автопойез или матричное воспроизведение, может быть снят, как неправильно сформулированный. Отметим, что в рамках гипотезы симбиотического происхождения жизни автопойетические свойства имеют собственное содержание и не выводимы из свойств второй системы молекул, способных к репликации.

Связующим звеном, способным облегчить симбиоз этих двух разнородных предформ жизни, могла быть клеточная мембрана, которая показывает сродство и к белкам, и к нуклеиновым кислотам, образуя белково-липидные и ДНК-липидные комплексы (Кувичкин, 2000). Предположительно развитие клеточной организации на самых начальных этапах шло через использование так называемых неламеллярных липидов, дающих в воде неплоскостные структуры, в том числе гексагональные в виде трубки и мицеллярные в виде однослойных микрошариков (Garab et al., 2000; Simidjiev et al., 2000). Неламеллярные липиды (кардиолипин, моногалактозилдиглицерин, фосфатидилэтаноламин) можно противопоставить ламеллярным (lamellar, bilayer lipids), которые образуют в воде бислой. Во многих клеточных мембранах неламеллярные липиды составляют большой процент от всех липидов. Например, на моногалактозилдиглицерин приходится половина всех липидов тилакоидной мембраны хлоропластов (Simidjiev et al., 2000). Содержание фосфатидилэтаноламина и кардиолипина в клеточной мембране грамотрицательных бактерий достигает 70-80 и 5-10% соответственно. Такой большой процент свидетельствует о том, что неламеллярные липиды играли главенствующую роль в становлении клетки. Они же отмечены в качестве ключевых компонентов ДНК-мембранных взаимодействий (Кувичкин, 2000). При наличии определенных полярных белков и под их воздействием структуры из неламеллярных липидов могут изменять свои свойства. Например, гексагональные липидные агрегаты будут распадаться, образуя двуслойные пленки. Такая пленка при наличии на ее поверхности репликаторов и катализаторов станет вогнутой, и это состояние вполне можно рассматривать в качестве промежуточного звена при образовании клетки в результате самопроизвольного замыкания «бластопора» (Blobel, 1980; см. также альтернативную точку зрения – Cavalier-Smith, 2001).


Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера:
<< 1 ... 6 7 8 9 10
На страницу:
10 из 10