), то для гравитационных взаимодействий мы получим тот самый второй закон Ньютона из классической динамики Ньютона (F = m * а), которая по ошибочному мнению Хайкина имеет самостоятельный физический смысл, никак не связанный с законом всемирного тяготения!
Сила из второго закона Ньютона это не просто абстрактная неуравновешенная сила, которая стала таковой в современной физике только по той простой причине, что в классической модели неуравновешенного движения ответное тело взаимодействия искусственно выносится за рамки неинерциальной системы ускоряемого тела и в дальнейшем для него не рассматривается. В реальной действительности ответное тело никуда не делось, т.к. именно его масса и определяет ускорение якобы неуравновешенного движения ускоряемого тела и реально уравновешивает взаимодействие в целом в соответствии с третьим законом Ньютона.
Присутствует в классической динамике, определяемой вторым законом Ньютона и расстояние между взаимодействующими телами. Это размер зоны упругой деформации вдоль линии взаимодействия между взаимодействующими телами. Правда в отличие от силы тяготения, которая обратно пропорциональна квадрату расстояния, сила упругости зависит от удлинения линейно, т.е. сила упругости пропорциональна первой степени удлинения. Эта зависимость была установлена экспериментально и носит имя: закон Гука:
F
= – k * x,
где:
x – удлинение;
k – модуль продольной упругости или модуль Юнга.
Однако это соотношение справедливо для равномерно деформированного тела, в котором установившаяся статическая деформация равномерно распределена по его объёму для постоянной силы, вызывающей деформацию. При движении под действием постоянной силы с постоянным ускорением деформация и силы упругости распределяются неравномерно по длине тела. Если учесть, что в реальном взаимодействии сила в центре зоны деформации не постоянная, а изменяется пропорционально удлинению, то индивидуальная сила, приложенная к каждому массовому элементу в каждом поперечном сечении тела, оказывается пропорциональной квадрату удлинения. Покажем это графически на Рис. 1.2.3.
Разобьем два взаимодействующих тела, представляющие собой цилиндрические стержни с одинаковой для простоты массой и одинаковыми геометрическими размерами на равные линейные части по длине цилиндров. Пусть для простоты таких частей будет три в каждом теле. Тогда любая сила, действующая на такие тела, будет пропорциональна (кратна) трём.
Пусть, исходя из нашего разбиения, при разгоне тел к ним условно приложена внешняя постоянная по величине и направлению сила равная (3F). Во время разгона к каждому элементу взаимодействующих тел будут приложены силы, показанные на рисунке (1.2.3.). На рисунке показаны также силы, действующие между элементами.
Мы не можем количественно оперировать с нулевыми или бесконечно малыми силами и удлинениями. Поэтому за точку отсчёта условно примем удлинение (х = ±1) и силу (F = 1F). Эти параметры будут соответственно обозначать начало сжатия и конец расширения зоны деформации (см. Рис. 1.2.3.). При этом численные значения удлинения и силы на этих стадиях могут быть сколь угодно малыми.
Целесообразность их малости для практических расчётов покажет опыт. Тогда эта величина может быть принята за единичное удлинение, а сила, вызывающая её – за единичную силу. Количество сечений рассчитывается как частное от деления максимальной силы на минимальную. При этом наибольшее удлинение также будет кратно этому соотношению
И ещё одно предварительное пояснение. Сила взаимодействия образуется в самом центре зоны деформации. Эту часть зоны деформации для простоты будем условно считать несоизмеримо малой по сравнению с деформацией, распространяющейся по длине тел. Тогда за удлинение, участвующее в расчётах силы, действующей на внешних концах и в центре зоны деформации тел, будем принимать только удлинение самих тел.
Но как бы ни была мала центральная зона деформации, она также подчиняется закону Гука. А поскольку она образуется из того же материала, из которого состоят и сами тела, то сила которая в ней образуется также меняется пропорционально удлинению. Таким образом, опуская это удлинение в общем удлинении тел, мы, тем не менее, будем учитывать вызываемое им изменение силы в центре взаимодействия.
Итак, смотрим рисунок:
Рис. 1.2.3
Как видно из рисунка в центре зоны деформации сила изменяется пропорционально удлинению в нашем случае в (х = 3) раз, а затем к краям зоны деформации ещё во столько же раз, т.е. всего в ((х = 3)
) раз. То есть сила инертного взаимодействия при движении тел с переменным ускорением под действием изменяющейся силы пропорциональна квадрату удлинения зоны деформации.
В современной физике считается, что силы упругости имеют электрическую природу. Но силы Кулона как раз и имеют квадратичную зависимость от расстояния. А вот почему квадратичная зависимость кулоновских сил от расстояния превращается в линейную зависимость сил упругости от расстояния, классическая физика не поясняет. Покажем, как это может быть согласовано.
Учитывая зависимость инертной силы двух взаимодействующих тел от квадрата их упругого удлинения, второй закон Ньютона можно привести к форме записи закона всемирного тяготения.
Fкв = k * (m
* m
/ r
) (1.2.4)
Тогда
а
= k * (m
/ r
) (1.2.5)
а
= k * (m
/ r
) (1.2. 6)
где:
r
: удлинение взаимодействующих тел.
k – инертная постоянная.
Теперь видно, что физический смысл гравитационной и инертной постоянной идентичен, разные только их величины. Однако физический смысл гравитационной и инертной постоянной определяется разным количеством работающих массовых элементов только частично.
Из приведённого выше механизма явления инерции или механизма взаимодействия физических тел следует, что работающие массовые элементы образуют объёмное поле распространения энергии взаимодействия. Естественно, что при этом только часть этой энергии сообщает взаимодействующим телам линейное поступательное движение в своих направлениях вдоль линии взаимодействия.
Другая часть рассеивается во всех остальных направлениях, не оказывая прямого влияния на линейное поступательное движение тел в основном направлении взаимодействия. Поэтому величина гравитационной постоянной определяется, в том числе и соотношением объёмно образующейся силы взаимодействия с линейным поступательным движение тел вдоль основного взаимодействия.
Об этом свидетельствует и размерность гравитационной постоянной ([м
/ (кг
с
)]), которая увязывает величину линейной силы взаимодействия с объёмным распространением энергии взаимодействия. Судя по размерности, которая не определяет, но отражает физический смысл любых физических величин, гравитационная постоянная определяет объёмное распространения энергии взаимодействия ([м
/с
]) приходящееся на один ([кг]) работающего вещества.
При этом количественно величина гравитационной постоянной одновременно учитывает, как разное количество работающих элементов в гравитационном и инертном взаимодействиях, так и разное объёмное распространения энергии взаимодействия в этих взаимодействиях, что влияет на их разные линейные ускорения в основном направлении.
Таким образом, гравитационная постоянная, а также очевидно инертная постоянная и электромагнитная постоянная, т.е. коэффициент видов взаимодействия имеет сложный физический смысл. Это:
1. Коэффициент взаимодействия, увязывающий объёмный характер распространения сил взаимодействия с линейным ускорением, сообщаемым телам вдоль линии взаимодействия.