Оценить:
 Рейтинг: 0

Физика. Порядок вещей, или Осознание знаний. Книга 2

Жанр
Год написания книги
2017
<< 1 2 3 4 5 6 ... 29 >>
На страницу:
2 из 29
Настройки чтения
Размер шрифта
Высота строк
Поля

Сила Кориолиса равна удвоенной радиальной скорости (V

), умноженной на угловую скорость вращения (?) и умноженную на синус угла между ними, а так же на испытуемую массу (M).

В классической физике описаны два варианта проявления силы и ускорения Кориолиса.

В первом варианте относительная скорость направлена вдоль радиуса вращающейся системы. Здесь действительно проявляется достаточно выраженное явление, которое в классической физике ассоциируют с ускорением Кориолиса. Однако в классической физике за силу и ускорение Кориолиса фактически принимается противо реакция на обычную тангенциальную силу, которая поддерживает угловую скорость переносного вращения. Поддерживающая сила – это либо сила, действующая на движущееся радиально тело со стороны вращающихся масс системы, которые не изменяют своего радиального положения, либо любая внешняя сила, которая поддерживает переносную угловую скорость на постоянном уровне.

В отсутствие поддерживающей силы происходит естественное уменьшение угловой скорости при радиальном движении от центра вращения и естественное увеличение угловой скорости при радиальном движении к центру вращения. Это явление в классической физике называется законом сохранения углового момента, который якобы выполняется в отсутствие тангенциальных сил. Однако в реальной действительности угловой момент сохраняется именно за счёт тангенциальной составляющей радиальной силы. Это и есть основа явления Кориолиса. Поэтому тангенциальную составляющую радиальной силы мы называем истинной силой Кориолиса-Кеплера.

Проявляясь совместно с «обычной» истинной силой Кориолиса, фиктивная сила инерции Кориолиса одновременно противоречит, как физическому смыслу обычных сил, так и фиктивных сил инерции. Поскольку в классической динамике вращательного движения понятие об обычной истинной силе Кориолиса-Кеплера отсутствует, то в классической физике родилась самая странная сила не только из всех сил инерции, но и самая странная из всех обычных сил!!!

Классическая сила Кориолиса – это либо, полу фиктивная обычная сила, либо, полу обычная фиктивная сила. Недаром физики всех народов, начиная со времён Кориолиса, и до сих пор спорят, реальна ли сила Кориолиса или же это только иллюзорная сила инерции.

Поскольку истинная сила Кориолиса-Кеплера в классической модели явления Кориолиса полностью скомпенсирована, то природа этого явления принципиально не может быть раскрыта в классической физике. В частности реальное ускорение и сила Кориолиса за счёт компенсации истинной силы Кориолиса-Кеплера вдвое меньше классического ускорения и силы Кориолиса. При этом классической силе Кориолиса соответствует только общее силовое напряжение, возникающее при противодействии поддерживающей силы и истинной силы Кориолиса-Кеплера.

Во втором варианте относительная скорость направлена перпендикулярно постоянному радиусу вращающейся системы. При этом абсолютная линейная скорость является величиной постоянной. Но это есть не что иное, как равномерное вращательное движение, динамику которого с классической же точки зрения определяет исключительно только центростремительное ускорение. Следовательно, либо никакого ускорения Кориолиса при тангенциальном относительном движении нет, либо классической физике следует пересмотреть свои взгляды, как на явление Кориолиса, так и на классическую модель вращательного движения.

Явление Кориолиса – Кеплера играет очень важную роль в природе. Например, А. И. Андреев в работе «Основы естественной энергетики», Санкт-Петербург, 2004, г. на стр. 181 пишет:

«Поскольку образование и существование вихрей элементарных частиц и гравитации происходит за счёт кориолисовых сил и самовращения, то кориолисово самовращение, именно в этом смысле является основой природы».

В реальной действительности никакого самовращения вихрей за счёт силы Кориолиса нет, и не может быть в принципе. Самовращение есть только в равномерном вращательном движении. Тем не менее, явление Кориолиса – Кеплера заслуживает того, чтобы уделить ему особое внимание при рассмотрении вопросов физики движения, тем более что в классической физике оно не имеет непротиворечивого объяснения.

Рассмотрим эти вопросы подробнее.

4.1. Первый вариант проявления ускорения Кориолиса. Скорость относительного движения направлена вдоль радиуса вращающейся системы

А. Н. Матвеев в работе «Механика и теория относительности», 3-е издание, Москва, «ОНИКС 21 век», «Мир и образование», 2003 г., допущенной в качестве учебника для студентов высших учебных заведений определяет ускорение Кориолиса следующим образом (см. фотокопии ниже).

Книга написана в соответствии с программой курса физики для университетов, однако, физики в данном учебнике нисколько не больше, чем во многих других современных учебниках по физике. Форма написания книги больше соответствует справочной литературе по физике, в которой приводятся не столько физические, сколько математические описания физических явлений.

Матвеев пытается выяснить и донести до читателей «физическую сущность кориолисова ускорения», как он сам пишет на странице 403 своей книги. Однако все принципиальные выводы, касающиеся физики явления Кориолиса, подробно не анализируются. Все спорные и противоречивые моменты явления Кориолиса остаются без доказательства и разъяснений. Механизм действия ускорения Кориолиса не раскрыт. Всё показано на уровне голой математики, за которой не всегда виден физический смысл явлений, хотя в физике все должно быть наоборот.

Ускорение Кориолиса в первом варианте по Матвееву это изменение скорости тела, движущегося радиально внутри вращающейся системы в направлении, перпендикулярном радиусу вращения. Это общепринятое в классической физике определение ускорения Кориолиса.

На стр. 404 Матвеев пишет:

«Скорость вдоль радиуса Vr изменяется за это время (?t) по направлению, а скорость Vn, перпендикулярная радиусу, изменяется как по направлению, так и по абсолютному значению. Полное изменение составляющей скорости, перпендикулярной радиусу, равно

?Vn =Vn

– Vn

* cos ? + Vr * ?? ?

? ? * ?r + Vr * ? ?t (66.3)

где учтено, что cos ? ? 1

Следовательно, кориолисово ускорение

w

= ? * ?r / dt + Vr * ? = 2 * Vr * ?».

Вообще говоря, поскольку поворот вектора переносной скорости происходит под действием переносного центростремительного ускорения, не имеющего отношения к поворотному ускорению Кориолиса, то векторы (V

) и (V

) можно сравнивать по абсолютной величине без учета (cos ?). Иначе по тем же самым соображениям (cos ?) следовало бы учитывать и при сравнении векторов (Vr). Но тогда мы вообще не увидели бы приращение (?Vr) по направлению. При этом из классического ускорения Кориолиса автоматически исчезла бы его вторая половина, связанная с поворотом (Vr), и нам вообще не пришлось бы ничего опровергать. Однако поскольку (cos ?) здесь совершенно не причём, то всё намного серьёзнее и связано с неправильными физическими представлениями классической физики о явлении Кориолиса.

Из выражения (66.3) следует, что ускорение Кориолиса – это изменение абсолютной скорости в направлении перпендикулярном радиусу, которое обеспечивается двумя самостоятельными независимыми ускорениями:

1. Ускорением, характеризующим приращение линейной скорости переносного вращения по абсолютной величине;

2. Ускорением, характеризующим приращение радиальной скорости относительного движения по направлению.

Фактически это означает, что приращение линейной скорости в направлении переносного вращения по абсолютной величине никак не сказывается на приращении радиальной скорости относительного движения по направлению, и наоборот – центростремительное ускорение, характеризующее изменение радиальной скорости относительного движения по направлению не имеет никакой корреляции с приращением линейной скорости переносного вращения по абсолютной величине. Однако в реальной действительности эти приращения тесно взаимосвязаны между собой, что проявляется, хотя бы в их равенстве по абсолютной величине. Более того можно показать, что это равенство не случайно, т.к. они представляют собой одну и ту же физическую величину.

На рисунке (4.1.1) показано, что каждая точка годографа радиальной скорости, изменяющейся по направлению, одновременно является и точкой годографа переносной скорости, изменяющейся по абсолютной величине, т.е. это один и тот же годограф.

Рис. 4.1.1

Рисунок (4.1.1) принципиально идентичен рисунку (159), приведенному в работе Матвеева (см. фотокопии выше). На нём выполнены лишь некоторые дополнительные построения, которые у Матвеева отсутствуют. В точке (А) показано традиционное расположение векторов этих скоростей, принятое в классической векторной геометрии. Операции сложения и вычитания векторов в векторной геометрии осуществляются на уровне стрелок исходных векторов. Однако результат снова переносится в точку на траектории. Поэтому мы не погрешим против истины, если перенесём вектор (Ve1) из точки (А) в точку (В) так, чтобы стрелки векторов переносной и относительной скоростей совместились в точке (В).

Далее вся полученная связка векторов (Vr1; Vе1) переносится параллельно самой себе в точку (В1), в которой тело оказалось бы, двигаясь с постоянной радиальной скоростью и с постоянной переносной скоростью (Vе1). Естественно, что при этом никакого приращения ни окружной переносной скорости по абсолютной величине, ни радиальной скорости по направлению не происходит, что соответствует сходу тела с траектории поворотного движения с постоянной поворотной скоростью и образованию девиации поворотного движения (В1, В2).

Вернём тело из точки (В1) на реальную траекторию в точку (В2), т.е. ликвидируем образровавшуюся девиацию. Для этого необходимо повернуть связку векторов (Vr1; Vе1) относительно точки (А1) с угловой скоростью переносного вращения в течение времени образования девиации. При этом совершенно очевидно, что совмещённые в одной точке стрелки связки векторов (Vr1) и (Vе1), формируют одни и те же точки искомого приращения поворотной скорости в виде общего годографа (?Vпов=?Vr=?Ve), он же девиация поворотного движения.

Теперь, перенесём вектор общего годографа (?Vпов=?Vr=?Ve), он же девиация поворотного движения, и вектор (Vr1) в точку (В2). При этом вектор (Vr1) превратится в вектор (Vr2), а вектор текущей окружной линейной скорости будет равен простой алгебраической сумме векторов (Vе1) и (?Vпов=?Vr=?Ve), что и показано на рисунке.

Таким образом, девиация поворотного движения определяется вдоль переносной окружности и равна общему приращению радиальной скорости по направлению и окружной скорости переносного движения по величине. Это и есть общий годограф поворотной скорости, который определяет общее для этих двух скоростей ускорение поворотного движения.

Поскольку девиация поворотного движения прямо пропорциональна радиусу, то очевидно, что её абсолютная величина определяется дугой переносной окружности со средним радиусом. На рисунке (4.1.1) показано также изменение абсолютной скорости (?Vабс.). Если бы в поворотном движении было два приращения двух составляющих так называемой поворотной скорости, то вектор (?Vабс) более чем вдвое превышал бы наш вектор (?Vпов = ?Vr = ?Ve). Однако, как видно на рисунке (4.1.1) он не дотягивает даже до полуторного превышения вектора (?Vпов = ?Vr = ?Ve).

Конечно же, можно выбрать другие значения исходных векторов, при которых вектор (?Vпов = ?Vr = ?Ve) будет значительно меньше по отношению к вектору (?Vабс). Однако в составе годографа абсолютной скорости даже зрительно всегда несложно увидеть приращение, обусловленное именно центростремительным ускорением переносного вращения. При этом оставшаяся часть, приходящаяся на вектор (?Vпов = ?Vr = ?Ve) вряд ли станет вдвое большей.

***

Равенство годографов (?Vпов = ?Vr = ?Ve), показанное на рисунке (4.1.1) допускает возможность его ещё более детальной геометрической проверки через годограф абсолютной скорости (?Vа). Очевидно, что годограф абсолютной скорости является геометрической суммой годографа переносной скорости (?Vпер) и годографа поворотной скорости (?Vпов). На рисунке 4.1.2 показано, что сумма годографа переносной скорости и годографа поворотной скорости в нашей версии (?Vпов = ?Vr = ?Ve) принципиально равна годографу абсолютной скорости.

Рис. 4.1.2

Конечно, такая криволинейная векторная геометрия годографов несколько некорректна, т.к. криволинейных векторов в классической физике не существует. Однако в очень малом интервале времени этот некорректный с точки зрения классической физики треугольник годографов переносной скорости (ВС), абсолютной скорости (АС) и поворотной скорости (АВ) практически эквивалентен треугольнику прямых векторов. Главное, что сторона (АВ) криволинейного треугольника годографов (АВС) ни при каких обстоятельствах не превысит равенство (?Vпов = ?Vr = ?Ve) вдвое, даже при распрямлении его сторон.

Идентичность приращения линейной скорости переносного вращения по абсолютной величине и относительной скорости по направлению можно показать и аналитически, что будет очередным подтверждением единства годографов переносной и относительной скорости (см. Рис. 4.1.1).

Приращение радиальной скорости относительного движения по направлению равно:
<< 1 2 3 4 5 6 ... 29 >>
На страницу:
2 из 29

Другие электронные книги автора Александр Алексеевич Астахов