Другими словами, у растений можно подразумевать что-то похожее на нервную систему, которая работает на тех же электрических импульсах, что и в животном мире.
Биолог Дитер Фолькман из Боннского университета, занимающийся долгие годы растениями, отмечал, что реакции растений связаны в основном с процессами роста. Эти реакции имеют замедленное протекание по сравнению с животным царством. Поэтому они менее заметны простым взглядом. Такие процессы можно ясно увидеть только с помощью ускоренной съемки. Но в конечном итоге реакции растений имеют те же характеристики, что и реакции низших животных.
По данным ботаников, растения воспринимают около 20-ти различных видов внешних раздражителей. В отличие от людей они способны, например, ощущать электромагнитное поле. Если поместить некое растение в такое поле, то его корешки будут всегда расти в сторону отрицательного полюса. Данный феномен много раз проверен, но объяснения ему до сих пор не найдено.
Доктор Моника Галиано в процессе иследований растений обнаружила у них также и коммуникативные способности. Иначе говоря, растения способны общаться между собой. В 2012 году в «Оксфорд Журналс» была опубликована ее работа о том, что растения продуцируют звуковые волны.
Кроме того, она обнаружила, что звуки, производимые растениями, достаточно многообразны и отличны друг от друга, чтобы связывать их исключительно с так называемым процессом кавитации (шум от парообразования и последующей конденсации пузырьков пара в потоке жидкости).
Более того, она доказала, что цветы «звучат» и тогда, когда не испытывают недостатка во влаге. В одной из своих статей она писала, что хоть уникальные механизмы, используемые животными для познания окружающей среды и общения друг с другом, являются предметом острого научного интереса, тем не менее существует также и коммуникация растений, в которую пока еще верят не все. Она убеждена, что со временем мы поймем, что все живые организмы на Земле могут воспринимать и передавать звук и вибрации, чтобы адекватно сосуществовать с другими в нашем разнообразном мире.
Но растения понимают не только свой язык. Они понимают и человеческий. В качестве доказательства часто приводится хрестоматийный пример из ботаники о том, как на двух соседних лабораторных грядках выращивали морковь. Растения росли в совершенно одинаковых условиях и имели одинаковый уход. Различие было лишь в том, что морковку на одной грядке постоянно хвалили, а на другой постоянно ругали. Морковка на первой грядке росла очень хорошо, а на второй, где ее ругали, росла хилой.
Опыты общения с растениями, в частности с филодендроном, проводил и химик Марсель Фогель.
Филодендрон (Philodеndron)
Он также подсоединял растение к датчикам полиграфа, и в нормальном состоянии самописец чертил прямую линию. Когда Фогель подносил руку к растению, думая при этом о растении как о лучшем друге, самописец чертил кривые линии.
Интересно, что минут через пять растение никак не реагировало на подобные мысли. Такая реакция филодендрона очень напоминала реакцию двух любящих людей, у которых сначала происходит накал страстей, потом заметный спад, пока не накопится новая энергия.
Фогель уверен в том, что люди могут общаться с растениями. Он писал, что растения – это живые существа, которые, подобно людям, могут быть слепыми, глухими и немыми. По его мнению, нет никаких сомнений в том, что они очень чувствительны и улавливают любые эмоции человека.
Одним из самых успешных исследователей, который любил разговаривать со своими растениями как с добрыми друзьями, был американский селекционер Лютер Бёрбанк. Ему, например, удалось вывести кактус без колючек, буквально убедив растение в том, что колючки, которые в пустыни служат растению в качестве защиты от поедания животными, в тепличных условиях ему уже не нужны, и через некоторое время Бёрбанк добился того, что выросло поколение кактусов без иголок.
Уже известно, что музыка имеет влияние на растения.
В 70-е годы японские ученые проводили эксперименты на помидорах и показали, что классическая музыка способствует их благотворному росту и развитию. Помидоры, слушая в теплице Моцарта, были намного больше тех, что росли без музыки. Кстати, тяжелый рок и другая ритмичная музыка влияла на их рост отрицательно: процессы роста замедлялись.
Это подтвердил и индийский ученый Т. Ц. Н. Сингх в своих экспериментах с растениями. Он отмечал, что через восемь недель после ежедневного получасового «прослушивания» музыки комнатными растениями, у них наблюдалось на 22% больше листьев и на 52% больше цветков по сравнению с растениями, которые росли в тишине.
Растения могут разговаривать друг с другом и предупреждать своих соседей о потенциальных угрозах, сигнализируя о нашествии вредителей, а также обсуждать опылителей, например пчел. К таким выводам в свое время пришли ученые из университетов Калифорнии и Токио.
Исследования показали, что коммуникативные навыки растений развиты гораздо сильнее, чем предполагалось ранее. Растения не только реагируют на сигналы из среды, но также сами подают сигналы другим растениям и другим организмам.
Отмечается, что в одном эксперименте с кустиками полыни во время тестов листья на некоторых кустиках обгрызали, как будто их поела саранча. У кустиков, растущих рядом, листья становились более упругими, чем у остальных участников эксперимента. Это значит, что растения воспринимали сигнал об опасности и подготавливались к ней.
Мало того, ученые выяснили, что это предупреждение хорошо понимают только близкие «родственники», то есть кусты, черенки которых получены размножением от общего родителя.
Есть и другие свидетельства общения растений между собой. Например, замечено, что жирафы в саванне, питаясь листьями кустарников и акаций, обычно не задерживаются у какого-то одного дерева. Наоборот, немного пощипав его, они перемещаются к другому, которое может быть на расстоянии нескольких десятков и даже сотен метров.
Жираф (Giraffa camelopardalis)
Это кажется странным, если учесть, что перемещение жирафов с места на место все же требует определенных физических усилий, а значит и дополнительных энергозатрат. Казалось бы, проще общипать одно дерево полностью и лишь затем идти к другому.
Оказалось, что дерево, поняв, что его листья начинают общипывать, выпускает в них специальные субстанции, делающие их горькими. Таким образом, жирафам приходится искать другое дерево. Было также замечено, что если рядом находятся родственные деревья, то и их листья становятся горькими.
Примечательно то, что, как и в опыте с полынью, горькими становились только листья родственных растений. Если среди них оказывалось дерево того же самого вида, но выросшее из семени, принесенного от неродственного дерева, то оно не меняло вкуса своих листьев.
Это является подтверждением того, что деревья не только способны обмениваться между собой определенной жизненно важной информацией, но, как видим, они способны использовать для этого «язык», понимаемый только членами «семьи».
Реакции растений в процессе различных опытов демонстрируют то, как растения способны оценивать раздражители. Это значит, что, несмотря на отсутствие у растений мозга и центральной нервной системы, как у других высокоорганизованных организмов, они все же способны думать.
Исследователи допускают у них наличие альтернативных систем передачи информации. Например, в их организме есть пути для трансляции данных в виде электрических сигналов. А распространяемая во внешний мир пыльца – это своего рода «доска объявлений», с помощью которой растения заявляют о себе собратьям и представителям других видов.
Если же есть нервная система, то должен быть и разум! А где разум, там и память!
Боннский ученый Дитер Фолькман провел эксперимент, который так же, как и эксперименты доктора Моники Галиано, доказывает наличие памяти у растений. Эксперимент заключался в следующем. Небольшой росток гороха в маленьком горшочке клали на пять минут набок. В этом положении низ горшочка, то есть положение «земля-небо», маркировался. Затем росток переворачивали в нормальное положение и ставили на 14 дней в холодильник, в котором при четырех градусах рост невозможен.
После двух недель в холодильнике росток гороха вновь переносили в теплое помещение, поливали теплой водой и помещали в специальный аппарат, который создавал для ростка искусственное состояние невесомости: горшок с растением укладывали набок и в таком положении он медленно, но постоянно вращался вокруг своей оси, чтобы росток не мог определить, где небо, а где земля.
Вопрос был в том, способно ли растение вспомнить свое положение, в котором оно находилось в течение пяти минут до помещения его в холодильник?
Результаты данных экспериментов показали, что стебель гороха в невесомости развивается в направлении от маркированной стороны горшочка. То есть можно с уверенностью утверждать, что растение вспомнило свое последнее «земное» состояние, а значит, у растения есть память. Тогда где она находится?
По мнению Дитера Фолькмана, различные части корня растения имеют информацию о том, что происходит внизу, вверху, сбоку от него. Поэтому о корне растения можно говорить как о децентрализованном, но все же едином координационном центре.
То, что корни растения могут быть чем-то вроде мозга, является пока лишь рабочей гипотезой. Тем не менее ясно то, что с устаревшим представлением о примитивности растений нужно окончательно распрощаться.
Целенаправленные исследования растений проводились также и в СССР в 1970-е годы биологом В. Г. Кармановым в лаборатории биокибернетики при институте агрофизики, основанном известным физиком Абрамом Федоровичем Иоффе. Эксперименты Карманова также показали, что растения способны воспринимать сигналы из окружающей среды.
Он писал, что без способности восприятия нет способности приспособления. Если бы растения не имели органов восприятия, а также способности запоминать информацию, перерабатывать ее и передавать дальше, то они уже давно бы вымерли.
Результаты этих исследований были опубликованы в газете «Правда» в октябре 1970 года в статье «Что рассказывают нам листья».
Хотя у растений нет ничего похожего на центральную нервную систему, все же они способны в ответ на различные раздражители генерировать распространяющиеся по организму электрические сигналы, напоминающие нервные импульсы у животных.
Известно, что у животных координация работы различных частей организма и целенаправленное поведение происходит благодаря наличию нервной системы. В ответ на те или иные раздражители нервные клетки генерируют электрический сигнал, который в биологии называется потенциал действия. Сигнал о раздражении быстро распространяется по отросткам нейронов и передается от одного нейрона к другому при помощи специальных сигнальных молекул – нейромедиаторов – в местах межнейронных контактов (синапсах).
Гораздо меньше известен факт того, что потенциалы действия есть и у высших растений, что было обнаружено индийским ученым Джагадис Чандра Бозе, также работавшим с мимозой стыдливой. Впоследствии потенциалы действия были обнаружены и у других высших растений.
Но вся загвоздка заключается в том, что у растений нет нервной системы, которая могла бы «анализировать» внешние сигналы и «принимать решения» на основе такого анализа. Нет у растений и специализированных образований аналогичных аксонам – длинным отросткам нервных клеток, предназначенным для быстрого проведения электрических сигналов.
Оказалось, что роль «нервов» у растений играют так называемые проводящие пучки, которые по своему строению и проводящим свойствам в какой-то мере напоминают нервы животных. В последнее время появились сведения об участии в проведении импульсов также и клеток флоэмы – ситовидных трубок.
Докор биологических наук С. С. Пятыгин отмечает, что по сравнению с животными у растений потенциалы действия замедлены на 3—4 порядка. У животных длительность потенциала действия измеряется миллисекундами, у растений – секундами и десятками секунд.
Замечено также, что развитие стресса у растений может завершаться переходом организма в состояние повышенной устойчивости к стресс-факторам. Эту особенность можно сравнить с выработкой у высших организмов условных рефлексов, описанных физиологом Павловым. В связи с этим появилась даже новая научная дисциплина – нейробиология растений.
Так что, как видим, растения не столь примитивны, как это нам представлялось до сих пор. Ботаник Даниэль Чамовиц, автор книги «Тайные знания растений», пишет: «Растения видят, когда вы к ним приближаетесь, они знают, когда вы останавливаетесь рядом. Они даже различают, когда вы носите красную или синюю рубашку. Они знают, когда вы красите свой дом или переносите горшки с одной стороны гостиной на другую»[1 - Чамовиц Д. Тайные знания растений. Что видят, слышат и помнят цветы и деревья. – М.: Центрполиграф, 2015.].
Другими словами, даже такие простые, по нашему мнению, создания обладают своеобразным уровнем разумности. Об этом говорит и ведущий эксперт в области интеллекта растений, ботаник Энтони Треувэс из университета Эдинбурга в Шотландии. Он сам определяет интеллект как способность чувствовать окружающую среду, анализировать ее, основываясь на доступных данных, и принимать решение об изменении поведения.
По мнению ученого, растения обладают всеми перечисленными способностями, которые людьми обычно остаются незамеченными, поскольку растения реагируют на раздражители очень медленно. Тем не менее, неподвижно находясь на одном месте, растения реагируют на солнце, тень, воду, изменения в почве, на соседние растения и хищников, изменяя модель роста и даже обмениваясь информацией между собой.
Профессор университета города Лидс Кристин Фойер, также подчеркивает, что поскольку растения часто подвержены стрессовым ситуациям, таким как засуха или холод, то для этого им необходимо не просто оценивать тот или иной фактор среды, а подготавливаться к нему, что они делают вполне успешно. А это в какой-то степени форма интеллекта.
В своей статье «Доказательство первичного сознания у растений» Клив Бакстер идет еще дальше и говорит, что растения – это не просто целенаправленное скопление клеток, это живые существа, проявляющие эмоции и даже имеющие душу. Все последующие исследования растений во многом являются подтверждением его предположений.