9. Trichopterygidæ.—These, the minutest of beetles, are represented by one species of the European and Madeiran genus Ptinella.
10. Necrophaga.—One indigenous species of Cryptophaga inhabits St. Helena, and this is said to be very closely allied to a Cape species.
Peculiarities and Origin of the Coleoptera of St. Helena.—We see that the great mass of the indigenous species are not only peculiar to the island, but so isolated in their characters as to show no close affinity with any existing insects; while a small number (about one-third of the whole) have some relations, though often very remote, with species now inhabiting Europe, Madeira, or South Africa. These facts clearly point to the very great antiquity of the insect fauna of St. Helena, which has allowed time for the modification of the originally introduced species, and their special adaptation to the conditions prevailing in this remote island. This antiquity is also shown by the remarkable specific modification of a few types. Thus the whole of the Cossonidæ may be referred to three types, one species only (Hexacoptus ferrugineus) being allied to the European Cossonidæ though forming a distinct genus; a group of three genera and seven species remotely allied to the Stenoscelis hylastoides, which occurs also at the Cape; while a group of twelve genera with forty-six species have their only (remote) allies in a few insects widely scattered in South Africa, New Zealand, Europe, and the Atlantic Islands. In like manner, eleven species of Bembidium form a group by themselves; and the Heteromera form two groups, one consisting of three genera and species of Opatridæ allied to a type found in Madeira, the other, Anthicodes, altogether peculiar.
Now each of these types may well be descended from a single species which originally reached the island from some other land; and the great variety of generic and specific forms into which some of them have diverged is an indication, and to some extent a measure, of the remoteness of their origin. The rich insect fauna of Miocene age found in Switzerland consists mostly of genera which still inhabit Europe, with others which now inhabit the Cape of Good Hope or the tropics of Africa and South America; and it is not at all improbable that the origin of the St. Helena fauna dates back to at least as remote, and not improbably to a still earlier, epoch. But if so, many difficulties in accounting for its origin will disappear. We know that at that time many of the animals and plants of the tropics, of North America, and even of Australia, inhabited Europe; while during the changes of climate, which, as we have seen, there is good reason to believe periodically occurred, there would be much migration from the temperate zones towards the equator, and the reverse. If, therefore, the nearest ally of any insular group now inhabits a particular country, we are not obliged to suppose that it reached the island from that country, since we know that most groups have ranged in past times over wider areas than they now inhabit. Neither are we limited to the means of transmission across the ocean that now exist, because we know that those means have varied greatly. During such extreme changes of conditions as are implied by glacial periods and by warm polar climates, great alterations of winds and of ocean-currents are inevitable, and these are, as we have already proved, the two great agencies by which the transmission of living things to oceanic islands has been brought about. At the present time the south-east trade-winds blow almost constantly at St. Helena, and the ocean-currents flow in the same direction, so that any transmission of insects by their means must almost certainly be from South Africa. Now there is undoubtedly a South African element in the insect-fauna, but there is no less clearly a European, or at least a north-temperate element, and this is very difficult to account for by causes now in action. But when we consider that this northern element is chiefly represented by remote generic affinity, and has therefore all the signs of great antiquity, we find a possible means of accounting for it. We have seen that during early Tertiary times an almost tropical climate extended far into the northern hemisphere, and a temperate climate to the Arctic regions. But if at this time (as is not improbable) the Antarctic regions were as much ice-clad as they are now it is certain that an enormous change must have been produced in the winds. Instead of a great difference of temperature between each pole and the equator, the difference would be mainly between one hemisphere and the other, and this might so disturb the trade winds as to bring St. Helena within the south temperate region of storms—a position corresponding to that of the Azores and Madeira in the North Atlantic, and thus subject it to violent gales from all points of the compass. At this remote epoch the mountains of equatorial Africa may have been more extensive than they are now, and may have served as intermediate stations by which some northern insects may have migrated to the southern hemisphere.
We must remember also that these peculiar forms are said to be northern only because their nearest allies are now found in the North Atlantic islands and Southern Europe; but it is not at all improbable that they are really widespread Miocene types, which have been preserved mainly in favourable insular stations. They may therefore have originally reached St. Helena from Southern Africa, or from some of the Atlantic islands, and may have been conveyed by oceanic currents as well as by winds.[122 - On Petermann's map of Africa, in Stieler's Hand-Atlas (1879), the Island of Ascension is shown as seated on a much larger and shallower submarine bank than St. Helena. The 1,000 fathom line round Ascension encloses an oval space 170 miles long by 70 wide, and even the 300 fathom line, one over 60 miles long; and it is therefore probable that a much larger island once occupied this site. Now Ascension is nearly equidistant between St. Helena and Liberia, and such an island might have served as an intermediate station through which many of the immigrants to St. Helena passed. As the distances are hardly greater than in the case of the Azores, this removes whatever difficulty may have been felt of the possibility of any organisms reaching so remote an island. The present island of Ascension is probably only the summit of a huge volcanic mass, and any remnant of the original fauna and flora it might have preserved may have been destroyed by great volcanic eruptions. Mr. Darwin collected some masses of tufa which were found to be mainly organic, containing, besides remains of fresh-water infusoria, the siliceous tissue of plants! In the light of the great extent of the submarine bank on which the island stands, Mr. Darwin's remark, that—"we may feel sure, that at some former epoch, the climate and productions of Ascension were very different from what they are now,"—has received a striking confirmation. (See Naturalist's Voyage Round the World, p. 495.)] This is the more probable, as a large proportion of the St. Helena beetles live even in the perfect state within the stems of plants or trunks of trees, while the eggs and larvæ of a still larger number are likely to inhabit similar stations. Drift-wood might therefore be one of the most important agencies by which these insects reached the island.
Let us now see how far the distribution of other groups support the conclusions derived from a consideration of the beetles. The Hemiptera have been studied by Dr. F. Buchanan White, and though far less known than the beetles, indicate somewhat similar relations. Eight out of twenty-one genera are peculiar, and the thirteen other genera are for the most part widely distributed, while one of the peculiar genera is of African type. The other orders of insects have not been collected or studied with sufficient care to make it worth while to refer to them in detail; but the land-shells have been carefully collected and minutely described by Mr. Wollaston himself, and it is interesting to see how far they agree with the insects in their peculiarities and affinities.
Land-shells of St. Helena.—The total number of species is only twenty-nine, of which seven are common in Europe or the other Atlantic islands, and are no doubt recent introductions. Two others, though described as distinct, are so closely allied to European forms, that Mr. Wollaston thinks they have probably been introduced and have become slightly modified by new conditions of life; so that there remain exactly twenty species which may be considered truly indigenous. No less than thirteen of these, however, appear to be extinct, being now only found on the surface of the ground or in the surface soil in places where the native forests have been destroyed and the land not cultivated. These twenty peculiar species belong to the following genera: Hyalina (3 sp.), Patula (4 sp.), Bulimus (7 sp.), Subulina (3 sp.), Succinea (3 sp.); of which, one species of Hyalina, three of Patula, all the Bulimi, and two of Subulina are extinct. The three Hyalinas are allied to European species, but all the rest appear to be highly peculiar, and to have no near allies with the species of any other country. Two of the Bulimi (B. auris vulpinæ and B. darwinianus) are said to somewhat resemble Brazilian, New Zealand, and Solomon Island forms, while neither Bulimus nor Succinea occur at all in the Madeira group.
Omitting the species that have probably been introduced by human agency, we have here indications of a somewhat recent immigration of European types which may perhaps be referred to the glacial period; and a much more ancient immigration from unknown lands, which must certainly date back to Miocene, if not to Eocene, times.
Absence of Fresh-water Organisms.—A singular phenomenon is the total absence of indigenous aquatic forms of life in St. Helena. Not a single water-beetle or fresh-water shell has been discovered; neither do there seem to be any water-plants in the streams, except the common water-cress, one or two species of Cyperus, and the Australian Isapis prolifera. The same absence of fresh-water shells characterises the Azores, where, however, there is one indigenous water-beetle. In the Sandwich Islands also recent observations refer to the absence of water-beetles, though here there are a few fresh-water shells. It would appear therefore that the wide distribution of the same generic and specific forms which so generally characterises fresh-water organisms, and which has been so well illustrated by Mr. Darwin, has its limits in the very remote oceanic islands, owing to causes of which we are at present ignorant.
The other classes of animals in St. Helena need occupy us little. There are no indigenous mammals, reptiles, fresh-water fishes or true land-birds; but there is one species of wader—a small plover (Ægialitis sanctæ-helenæ)—very closely allied to a species found in South Africa, but presenting certain differences which entitle it to the rank of a peculiar species. The plants, however, are of especial interest from a geographical point of view, and we must devote a few pages to their consideration as supplementing the scanty materials afforded by the animal life, thus enabling us better to understand the biological relations and probable history of the island.
Native Vegetation of St. Helena.—Plants have certainly more varied and more effectual means of passing over wide tracts of ocean than any kinds of animals. Their seeds are often so minute, of such small specific gravity, or so furnished with downy or winged appendages, as to be carried by the wind for enormous distances. The bristles or hooked spines of many small fruits cause them to become easily attached to the feathers of aquatic birds, and they may thus be conveyed for thousands of miles by these pre-eminent wanderers; while many seeds are so protected by hard outer coats and dense inner albumen, that months of exposure to salt water does not prevent them from germinating, as proved by the West Indian seeds that reach the Azores or even the west coast of Scotland, and, what is more to the point, by the fact stated by Mr. Melliss, that large seeds which have floated from Madagascar or Mauritius round the Cape of Good Hope, have been thrown on the shores of St. Helena and have then sometimes germinated!
We have therefore little difficulty in understanding how the island was first stocked with vegetable forms. When it was so stocked (generally speaking), is equally clear. For as the peculiar coleopterous fauna, of which an important fragment remains, is mainly composed of species which are specially attached to certain groups of plants, we may be sure that the plants were there long before the insects could establish themselves. However ancient then is the insect fauna the flora must be more ancient still. It must also be remembered that plants, when once established in a suitable climate and soil, soon take possession of a country and occupy it almost to the complete exclusion of later immigrants. The fact of so many European weeds having overrun New Zealand and temperate North America may seem opposed to this statement, but it really is not so. For in both these cases the native vegetation has first been artificially removed by man and the ground cultivated; and there is no reason to believe that any similar effect would be produced by the scattering of any amount of foreign seed on ground already completely clothed with an indigenous vegetation. We might therefore conclude à priori, that the flora of such an island as St. Helena would be of an excessively ancient type, preserving for us in a slightly modified form examples of the vegetation of the globe at the time when the island first rose above the ocean. Let us see then what botanists tell us of its character and affinities.
The truly indigenous flowering plants are about fifty in number, besides twenty-six ferns. Forty of the former and ten of the latter are absolutely peculiar to the island, and, as Sir Joseph Hooker tells us, "with scarcely an exception, cannot be regarded as very close specific allies of any other plants at all. Seventeen of them belong to peculiar genera, and of the others, all differ so markedly as species from their congeners, that not one comes under the category of being an insular form of a continental species." The affinities of this flora are, Sir Joseph Hooker thinks, mainly African and especially South African, as indicated by the presence of the genera Phylica, Pelargonium, Mesembryanthemum, Oteospermum, and Wahlenbergia, which are eminently characteristic of southern extra-tropical Africa. The sixteen ferns which are not peculiar are common either to Africa, India, or America, a wide range sufficiently explained by the dust-like spores of ferns, capable of being carried to unknown distances by the wind, and the great stability of their generic and specific forms, many of those found in the Miocene deposits of Switzerland, being hardly distinguishable from living species. This shows, that identity of species of ferns between St. Helena and distant countries does not necessarily imply a recent origin.
The Relation of the St. Helena Compositæ.—In an elaborate paper on the Compositæ,[123 - "Notes on the Classification, History, and Geographical Distribution of Compositæ."—Journal of the Linnean Society, Vol. XIII. p. 563 (1873).] Mr. Bentham gives us some valuable remarks on the affinities of the seven endemic species belonging to the genera Commidendron, Melanodendron, Petrobium, and Pisiadia, which forms so important a portion of the existing flora of St. Helena. He says: "Although nearer to Africa than to any other continent, those composite denizens which bear evidence of the greatest antiquity have their affinities for the most part in South America, while the colonists of a more recent character are South African." … "Commidendron and Melanodendron are among the woody Asteroid forms exemplified in the Andine Diplostephium, and in the Australian Olearia. Petrobium is one of three genera, remains of a group probably of great antiquity, of which the two others are Podanthus in Chile and Astemma in the Andes. The Pisiadia is an endemic species of a genus otherwise Mascarene or of Eastern Africa, presenting a geographical connection analogous to that of the St. Helena Melhaniæ,[124 - The Melhaniæ comprise the two finest timber trees of St. Helena, now almost extinct, the redwood and native ebony.] with the Mascarene Trochetia."
Whenever such remote and singular cases of geographical affinity as the above are pointed out, the first impression is to imagine some mode by which a communication between the distant countries implicated might be effected; and this way of viewing the problem is almost universally adopted, even by naturalists. But if the principles laid down in this work and in my Geographical Distribution of Animals are sound, such a course is very unphilosophical. For, on the theory of evolution, nothing can be more certain than that groups now broken up and detached were once continuous, and that fragmentary groups and isolated forms are but the relics of once widespread types, which have been preserved in a few localities where the physical conditions were especially favourable, or where organic competition was less severe. The true explanation of all such remote geographical affinities is, that they date back to a time when the ancestral group of which they are the common descendants had a wider or a different distribution; and they no more imply any closer connection between the distant countries the allied forms now inhabit, than does the existence of living Equidæ in South Africa and extinct Equidæ in the Pliocene deposits of the Pampas, imply a continent bridging the South Atlantic to allow of their easy communication.
Concluding Remarks on St. Helena.—The sketch we have now given of the chief members of the indigenous fauna and flora of St. Helena shows, that by means of the knowledge we have obtained of past changes in the physical history of the earth, and of the various modes by which organisms are conveyed across the ocean, all the more important facts become readily intelligible. We have here an island of small size and great antiquity, very distant from every other land, and probably at no time very much less distant from surrounding continents, which became stocked by chance immigrants from other countries at some remote epoch, and which has preserved many of their more or less modified descendants to the present time. When first visited by civilised man it was in all probability far more richly stocked with plants and animals, forming a kind of natural museum or vivarium in which ancient types, perhaps dating back to the Miocene period, or even earlier, had been saved from the destruction which has overtaken their allies on the great continents. Unfortunately many, we do not know how many, of these forms have been exterminated by the carelessness and improvidence of its civilised but ignorant rulers; and it is only by the extreme ruggedness and inaccessibility of its peaks and crater-ridges that the scanty fragments have escaped by which alone we are able to obtain a glimpse of this interesting chapter in the life-history of our earth.
CHAPTER XV
THE SANDWICH ISLANDS
Position and Physical Features—Zoology of the Sandwich Islands—Birds—Reptiles—Land-shells—Insects—Vegetation of the Sandwich Islands—Peculiar Features of the Hawaiian Flora—Antiquity of the Hawaiian Fauna and Flora—Concluding Observations on the Fauna and Flora of the Sandwich Islands—General Remarks on Oceanic Islands.
The Sandwich Islands are an extensive group of large islands situated in the centre of the North Pacific, being 2,350 miles from the nearest part of the American coast—the bay of San Francisco, and about the same distance from the Marquesas and the Samoa Islands to the south, and the Aleutian Islands a little west of north. They are, therefore, wonderfully isolated in mid-ocean, and are only connected with the other Pacific Islands by widely scattered coral reefs and atolls, the nearest of which, however, are six or seven hundred miles distant, and are all nearly destitute of animal or vegetable life. The group consists of seven large inhabited islands besides four rocky islets; the largest, Hawaii, being seventy miles across and having an area 3,800 square miles—being somewhat larger than all the other islands together. A better conception of this large island will be formed by comparing it with Devonshire, with which it closely agrees both in size and shape, though its enormous volcanic mountains rise to nearly 14,000 feet high. Three of the smaller islands are each about the size of Hertfordshire or Bedfordshire, and the whole group stretches from north-west to south-east for a distance of about 350 miles. Though so extensive, the entire archipelago is volcanic, and the largest island is rendered sterile and comparatively uninhabitable by its three active volcanoes and their widespread deposits of lava.
MAP OF THE SANDWICH ISLANDS.
The light tint shows where the sea is less than 1,000 fathoms deep.
The figures show the depth in fathoms.
The ocean depths by which these islands are separated from the nearest continents are enormous. North, east, and south, soundings have been obtained a little over or under three thousand fathoms, and these profound deeps extend over a large part of the North Pacific. We may be quite sure, therefore, that the Sandwich Islands have, during their whole existence, been as completely severed from the great continents as they are now; but on the west and south there is a possibility of more extensive islands having existed, serving as stepping-stones to the island groups of the Mid-Pacific. This is indicated by a few widely-scattered coral islets, around which extend considerable areas of less depth, varying from two hundred to a thousand fathoms, and which may therefore indicate the sites of submerged islands of considerable extent. When we consider that east of New Zealand and New Caledonia, all the larger and loftier islands are of volcanic origin, with no trace of any ancient stratified rocks (except, perhaps, in the Marquesas, where, according to Jules Marcou, granite and gneiss are said to occur) it seems probable that the innumerable coral-reefs and atolls, which occur in groups on deeply submerged banks, mark the sites of bygone volcanic islands, similar to those which now exist, but which, after becoming extinct, have been lowered or destroyed by denudation, and finally have altogether disappeared except where their sites are indicated by the upward-growing coral-reefs. If this view is correct we should give up all idea of there ever having been a Pacific continent, but should look upon that vast ocean as having from the remotest geological epochs been the seat of volcanic forces, which from its profound depths have gradually built up the islands which now dot its surface, as well as many others which have sunk beneath its waves. The number of islands, as well as the total quantity of land-surface, may sometimes have been greater than it is now, and may thus have facilitated the transfer of organisms from one group to another, and more rarely even from the American, Asiatic, or Australian continents. Keeping these various facts and considerations in view, we may now proceed to examine the fauna and flora of the Sandwich Islands, and discuss the special phenomena they present.
MAP OF THE NORTH PACIFIC WITH ITS SUBMERGED BANKS.
The light tint shows where the sea is less than 1,000 fathoms deep.
The dark tint ,, ,, ,, more than 1,000 fathoms deep.
The figures show the depths in fathoms.
Zoology of the Sandwich Islands: Birds.—It need hardly be said that indigenous mammalia are quite unknown in the Sandwich Islands, the most interesting of the higher animals being the birds, which are tolerably numerous and highly peculiar. Many aquatic and wading birds which range over the whole Pacific visit these islands, twenty-five species having been observed, but even of these six are peculiar—a coot, Fulica alai; a moorhen, Gallinula galeata var sandvichensis; a rail with rudimentary wings, Pennula millei; a stilt-plover, Himantopus knudseni; and two ducks, Anas Wyvilliana and Bernicla sandvichensis. The birds of prey are also great wanderers. Four have been found in the islands—the short-eared owl, Otus brachyotus, which ranges over the greater part of the globe, but is here said to resemble the variety found in Chile and the Galapagos; the barn owl, Strix flammea, of a variety common in the Pacific; a peculiar sparrow-hawk, Accipiter hawaii; and Buteo solitarius, a buzzard of a peculiar species, and coloured so as to resemble a hawk of the American subfamily Polyborinæ. It is to be noted that the genus Buteo abounds in America, but is not found in the Pacific; and this fact, combined with the remarkable colouration, renders it almost certain that this peculiar species is of American origin.
The Passeres, or true perching birds, are especially interesting, being all of peculiar species, and, all but one, belonging to peculiar genera. Their numbers have been greatly increased since the first edition of this work appeared, partly by the exertions of American naturalists, and very largely by the researches of Mr. Scott B. Wilson, who visited the Sandwich Islands for the purpose of investigating their ornithology, and collected assiduously in the various islands of the group for a year and a half. This gentleman is now publishing a finely illustrated work on Hawaiian birds, and he has kindly furnished me with the following list.
Many of the birds recently described are representative forms found in the several islands of the group.
Taking the above in the order here given, we have, first, two peculiar genera of true flycatchers, a family confined to the Old World, but extending over the Pacific as far as the Marquesas Islands. Next we have two peculiar genera (with four species) of honeysuckers, a family confined to the Australian region, and also ranging over all the Pacific Islands to the Marquesas. We now come to the most important group of birds in the Sandwich Islands, comprising seven or eight peculiar genera, and twenty-two species which are believed to form a peculiar family allied to the Oriental flower-peckers (Diceidæ), and perhaps remotely to the American greenlets (Vireonidæ), or tanagers (Tanagridæ). They possess singularly varied beaks, some having this organ much thickened like those of finches, to which family some of them have been supposed to belong. In any case they form a most peculiar group, and cannot be associated with any other known birds. The last species, and the only one not belonging to a peculiar genus, is the Hawaiian crow, belonging to the almost universally distributed genus Corvus.
On the whole, the affinities of these birds are, as might be expected, chiefly with Australia and the Pacific Islands; but they exhibit in the buzzard, one of the owls, and perhaps in some of the Drepanididæ, slight indications of very rare or very remote communication with America. The amount of speciality is, however, wonderful, far exceeding that of any other islands; the only approach to it being made by New Zealand and Madagascar, which have a much more varied bird fauna and a smaller proportionate number of peculiar genera. The Galapagos, among the true oceanic islands, while presenting many peculiarities have only four out of the ten genera of Passeres peculiar. These facts undoubtedly indicate an immense antiquity for this group of islands, or the vicinity of some very ancient land (now submerged), from which some portion of their peculiar fauna might be derived. For further details as to the affinities and geographical distribution of the genera and species, the reader must consult Mr. Scott Wilson's work The Birds of the Sandwich Islands, already alluded to.
Reptiles.—The only other vertebrate animals are two lizards. One of these is a very widespread species, Ablepharus pœcilopleurus, ranging from the Pacific Islands to West Africa. The other is said to form a peculiar genus of geckoes, but both its locality and affinities appear to be somewhat doubtful.
Land-shells.—The only other group of animals which has been carefully studied, and which presents features of especial interest, are the land-shells. These are very numerous, about thirty genera, and between three and four hundred species having been described; and it is remarkable that this single group contains as many species of land-shells as all the other Polynesian Islands from the Pelew Islands and Samoa to the Marquesas. All the species are peculiar, and about three-fourths of the whole belong to peculiar genera, fourteen of which constitute the subfamily Achatinellinæ, entirely confined to this group of islands and constituting its most distinguishing feature. Thirteen genera (comprising sixty-four species) are found also in the other Polynesian Islands, but three genera of Auriculidæ (Plecotrema, Pedipes, and Blauneria) are not found in the Pacific, but inhabit—the former genus Australia, China, Bourbon, and Cuba, the two latter the West Indian Islands. Another remarkable peculiarity of these islands is the small number of Operculata, which are represented by only one genus and five species, while the other Pacific Islands have twenty genera and 115 species, or more than half the number of the Inoperculata. This difference is so remarkable that it is worth stating in a comparative form:—
When we remember that in the West Indian Islands the Operculata abound in a greater proportion than even in the Pacific Islands generally, we are led to the conclusion that limestone, which is plentiful in both these areas, is especially favourable to them, while the purely volcanic rocks are especially unfavourable. The other peculiarities of the Sandwich Islands, however, such as the enormous preponderance of the strictly endemic Achatinellinæ, and the presence of genera which occur elsewhere only beyond the Pacific area in various parts of the great continents, undoubtedly point to a very remote origin, at a time when the distribution of many of the groups of mollusca was very different from that which now prevails.
A very interesting feature of the Sandwich group is the extent to which the species and even the genera are confined to separate islands. Thus the genera Carelia and Catinella with eight species are peculiar to the island of Kaui; Bulimella, Apex, Frickella, and Blauneria, to Oahu; Perdicella to Maui; and Eburnella to Lanai. The Rev. John T. Gulick, who has made a special study of the Achatinellinæ, informs us that the average range of the species in this sub-family is five or six miles, while some are restricted to but one or two square miles, and only very few have the range of a whole island. Each valley, and often each side of a valley, and sometimes even every ridge and peak possesses its peculiar species.[125 - Journal of the Linnean Society, 1873, p. 496. "On Diversity of Evolution under one set of External Conditions." Proceedings of the Zoological Society of London, 1873, p. 80. "On the Classification of the Achitinellidæ."] The island of Oahu, in which the capital is situated, has furnished about half the species already known. This is partly due to its being more forest-clad, but also, no doubt, in part to its being better explored, so that notwithstanding the exceptional riches of the group, we have no reason to suppose that there are not many more species to be found in the less explored islands. Mr. Gulick tells us that the forest region that covers one of the mountain ranges of Oahu is about forty miles in length, and five or six miles in width, yet this small territory furnishes about 175 species of Achatinellidæ, represented by 700 or 800 varieties. The most important peculiar genus, not belonging to the Achatinella group, is Carelia, with six species and several named varieties, all peculiar to Kaui, the most westerly of the large islands. This would seem to show that the small islets stretching westward, and situated on an extensive bank with less than a thousand fathoms of water over it, may indicate the position of a large submerged island whence some portion of the Sandwich Island fauna was derived.
Insects.—Owing to the researches of the Rev. T. Blackburn we have now a fair knowledge of the Coleopterous fauna of these islands. Unfortunately some of the most productive islands in plants—Kaui and Maui—were very little explored, but during a residence of six years the equally rich Oahu was well worked, and the general character of the beetle fauna must therefore be considered to be pretty accurately determined. Out of 428 species collected, many being obviously recent introductions, no less than 352 species and 99 of the genera appear to be quite peculiar to the archipelago. Sixty of these species are Carabidæ, forty-two are Staphylinidæ, forty are Nitidulidæ, twenty are Ptinidæ, twenty are Ciodidæ, thirty are Aglycyderidæ, forty-five are Curculionidæ, and fourteen are Cerambycidæ, the remainder being distributed among twenty-two other families. Many important families, such as Cicindelidæ, Scarabœidæ, Buprestidæ, and the whole of the enormous series of the Phytophaga are either entirely absent or are only represented by a few introduced species. In the eight families enumerated above most of the species belong to peculiar genera which usually contain numerous distinct species; and we may therefore consider these to represent the descendants of the most ancient immigrants into the islands.
Two important characteristics of the Coleopterous fauna are, the small size of the species, and the great scarcity of individuals. Dr. Sharp, who has described many of them,[126 - "Memoirs on the Coleoptera of the Hawaiian Islands." By the Rev. T. Blackburn, B.A., and Dr. D. Sharp. Scientific Transactions of the Royal Dublin Society. Vol. III. Series II. 1885.] says they are "mostly small or very minute insects," and that "there are few—probably it would be correct to say absolutely none—that would strike an ordinary observer as being beautiful." Mr. Blackburn says that it was not an uncommon thing for him to pass a morning on the mountains and to return home with perhaps two or three specimens, having seen literally nothing else except the few species that are generally abundant. He states that he "has frequently spent an hour sweeping flower-covered herbage, or beating branches of trees over an inverted white umbrella without seeing the sign of a beetle of any kind." To those who have collected in any tropical or even temperate country on or near a continent, this poverty of insect life must seem almost incredible; and it affords us a striking proof of how erroneous are those now almost obsolete views which imputed the abundance, variety, size, and colour of insects to the warmth and sunlight and luxuriant vegetation of the tropics. The facts become quite intelligible, however, if we consider that only minute insects of certain groups could ever reach the islands by natural means, and that these, already highly specialised for certain defined modes of life, could only develop slowly into slightly modified forms of the original types. Some of the groups, however, are considered by Dr. Sharp to be very ancient generalised forms, especially the peculiar family Aglycyderidæ, which he looks upon as being "absolutely the most primitive of all the known forms of Coleoptera, it being a synthetic form linking the isolated Rhynchophagous series of families with the Clavicorn series. About thirty species are known in the Hawaiian Islands, and they exhibit much difference inter se." A few remarks on each of the more important of the families will serve to indicate their probable mode and period of introduction into the islands.
The Carabidæ consist chiefly of seven peculiar genera of Anchomenini comprising fifty-one species, and several endemic species of Bembidiinæ. They are highly peculiar and are all of small size, and may have originally reached the islands in the crevices of the drift wood from N.W. America which is still thrown on their shores, or, more rarely, by means of a similar drift from the N.-Western islands of the Pacific.[127 - See Hildebrand's Flora of the Hawaiian Islands, Introduction, p. xiv.] It is interesting to note that peculiar species of the same groups of Carabidæ are found in the Azores, Canaries, and St. Helena, indicating that they possess some special facilities for transmission across wide oceans and for establishing themselves upon oceanic islands. The Staphylinidæ present many peculiar species of known genera. Being still more minute and usually more ubiquitous than the Carabidæ, there is no difficulty in accounting for their presence in the islands by the same means of dispersal. The Nitidulidæ, Ptinidæ, and Ciodidæ being very small and of varied habits, either the perfect insects, their eggs or larvæ, may have been introduced either by water or wind carriage, or through the agency of birds. The Curculionidæ, being wood bark or nut borers, would have considerable facilities for transmission by floating timber, fruits, or nuts; and the eggs or larvæ of the peculiar Cerambycidæ must have been introduced by the same means. The absence of so many important and cosmopolitan groups whose size or constitution render them incapable of being thus transmitted over the sea, as well as of many which seem equally well adapted as those which are found in the islands, indicate how rare have been the conditions for successful immigration; and this is still further emphasized by the extreme specialisation of the fauna, indicating that there has been no repeated immigration of the same species which would tend, as in the case of Bermuda, to preserve the originally introduced forms unchanged by the effects of repeated intercrossing.
Vegetation of the Sandwich Islands.—The flora of these islands is in many respects so peculiar and remarkable, and so well supplements the information derived from its interesting but scanty fauna, that a brief account of its more striking features will not be out of place; and we fortunately have a pretty full knowledge of it, owing to the researches of the German botanist Dr. W. Hildebrand.[128 - Flora of the Hawaiian Islands, by W. Hildebrand, M.D., annotated and published after the author's death by W. F. Hildebrand, 1888.]
Considering their extreme isolation, their uniform volcanic soil, and the large proportion of the chief island which consists of barren lava-fields, the flora of the Sandwich Islands is extremely rich, consisting, so far as at present known, of 844 species of flowering plants and 155 ferns. This is considerably richer than the Azores (439 Phanerogams and 39 ferns), which though less extensive are perhaps better known, or than the Galapagos (332 Phanerogams), which are more strictly comparable, being equally volcanic, while their somewhat smaller area may perhaps be compensated by their proximity to the American continent. Even New Zealand with more than twenty times the area of the Sandwich group, whose soil and climate are much more varied and whose botany has been thoroughly explored, has not a very much larger number of flowering plants (935 species), while in ferns it is barely equal.
The following list gives the number of indigenous species in each natural order.
Number of Species in each Natural Order in the Hawaiian Flora, excluding the introduced Plants.
Peculiar Features of the Flora.—This rich insular flora is wonderfully peculiar, for if we deduct 115 species, which are believed to have been introduced by man, there remain 705 species of flowering plants of which 574, or more than four-fifths, are quite peculiar to the islands. There are no less than 38 peculiar genera out of a total of 265 and these 38 genera comprise 254 species, so that the most isolated forms are those which most abound and thus give a special character to the flora. Besides these peculiar types, several genera of wide range are here represented by highly peculiar species. Such are the Hawaiian species of Lobelia which are woody shrubs either creeping or six feet high, while a species of one of the peculiar genera of Lobeliaceæ is a tree reaching a height of forty feet. Shrubby geraniums grow twelve or fifteen feet high, and some vacciniums grow as epiphytes on the trunks of trees. Violets and plantains also form tall shrubby plants, and there are many strange arborescent compositæ, as in other oceanic islands.
The affinities of the flora generally are very wide. Although there are many Polynesian groups, yet Australian, New Zealand, and American forms are equally represented. Dr. Pickering notes the total absence of a large number of families found in Southern Polynesia, such as Dilleniceæa, Anonaceæ, Olacaceæ, Aurantiaceæ, Guttiferæ, Malpighiaceæ, Meliaceæ, Combretaceæ, Rhizophoraceæ, Melastomaceæ, Passifloraceæ, Cunoniaceæ, Jasminaceæ, Acanthaceæ, Myristicaceæ, and Casuaraceæ, as well as the genera Clerodendron, Ficus, and epidendric orchids. Australian affinities are shown by the genera Exocarpus, Cyathodes, Melicope, Pittosporum, and by a phyllodinous Acacia. New Zealand is represented by Ascarina, Coprosma, Acæna, and several Cyperaceæ; while America is represented by the genera Nama, Gunnera, Phyllostegia, Sisyrinchium, and by a red-flowered Rubus and a yellow-flowered Sanicula allied to Oregon species.
There is no true alpine flora on the higher summits, but several of the temperate forms extend to a great elevation. Thus Mr. Pickering records Vaccinium, Ranunculus, Silene, Gnaphalium and Geranium, as occurring above ten thousand feet elevation; while Viola, Drosera, Acæna, Lobelia, Edwardsia, Dodonæa, Lycopodium, and many Compositæ, range above six thousand feet. Vaccinium and Silene are very interesting, as they are almost peculiar to the North Temperate zone; while many plants allied to Antarctic species are found in the bogs of the high plateaux.
The proportionate abundance of the different families in this interesting flora is as follows:—
Nine other orders, Geraniaceæ, Rhamnaceæ, Rosaceæ, Myrtaceæ, Primulaceæ, Loganiaceæ, Liliaceæ, Thymelaceæ, and Cucurbitaceæ, have six or seven species each; and among the more important orders which have less than five species each are Ranunculaceæ, Cruciferæ, Vaccinacæ, Apocynaceæ, Boraginaceæ, Scrophulariaceæ, Polygonaceæ, Orchidaceæ, and Juncaceæ. The most remarkable feature here is the great abundance of Lobeliaceæ, a character of the flora which is probably unique; while the superiority of Labiatæ to Leguminosæ and the scarcity of Rosaceæ and Orchidaceæ are also very unusual. Composites, as in most temperate floras, stand at the head of the list, and it will be interesting to note the affinities which they indicate. Omitting eleven species which are cosmopolitan, and have no doubt entered with civilised man, there remain nineteen genera and seventy species of Compositæ in the islands. Sixty-one of the species are peculiar, as are eight of the genera; while the genus Lipochæta with eleven species is only known elsewhere in the Galapagos, where a single species occurs. We may therefore consider that nine out of the nineteen genera of Hawaiian Compositæ are really confined to the Archipelago. The relations of the peculiar genera and species are indicated in the following table.[129 - These are obtained from Hildebrand's Flora supplemented by Mr. Bentham's paper in the Journal of the Linnean Society.]
Affinities of Hawaiian Composites.