Оценить:
 Рейтинг: 0

Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras

Автор
Год написания книги
2018
<< 1 ... 24 25 26 27 28 29 30 31 32 ... 42 >>
На страницу:
28 из 42
Настройки чтения
Размер шрифта
Высота строк
Поля

Phasianidæ (Pheasants)

40. Phasianus formosanus. Allied to P. torquatus of China.

41. Euplocamus swinhoii. A very peculiar and beautiful species allied to the tropical fire-backed pheasants, and to the silver pheasant of North China.

Strigidæ (Owls)

42. Athene pardalota. Closely allied to a Chinese species.

43. Lempigius hambroekii. Allied to a Chinese species.

This list exhibits to us the marvellous fact that more than half the peculiar species of Formosan birds have their nearest allies in such remote regions as the Himalayas, South India, the Malay Islands, or Japan, rather than in the adjacent parts of the Asiatic continent. Fourteen species have Himalayan allies, and six of these belong to genera which are unknown in China. One has its nearest ally in the Nilgherries, and five in the Malay Islands; and of these six, four belong to genera which are not Chinese. Two have their only near allies in Japan. Perhaps more curious still are those cases in which, though the genus is Chinese, the nearest allied species is to be sought for in some remote region. Thus we have the Formosan babbler (Garrulax ruficeps) not allied to the species found in South China, but to one inhabiting North India and East Thibet; while the black bulbul (Hypsipetes nigerrimus), is not allied to the Chinese species but to an Assamese form.

In the same category as the above we must place eight species not peculiar to Formosa, but which are Indian or Malayan rather than Chinese, so that they offer examples of discontinuous distribution somewhat analogous to what we found to occur in Japan. These are enumerated in the following list.

Species of Birds common to Formosa and India or Malaya, but not found in China

1. Siphia superciliaris. The Rufous-breasted Flycatcher of the S. E. Himalayas.

2. Halcyon coromanda. The Great Red Kingfisher of India, Malaya, and Japan.

3. Palumbus pulchricollis. The Darjeeling Wood-pigeon of the S. E. Himalayas.

4. Turnix dussumieri. The larger Button-quail of India.

5. Spizaetus nipalensis. The Spotted Hawk-eagle of Nepal and Assam.

6. Lophospiza trivirgata. The Crested Gos-hawk of the Malay Islands.

7. Bulaca newarensis. The Brown Wood-owl of the Himalayas.

8. Strix candida. The Grass-owl of India and Malaya.

The most interesting of the above are the pigeon and the flycatcher, both of which are, so far as yet known, strictly confined to the Himalayan mountains and Formosa. They thus afford examples of discontinuous specific distribution exactly parallel to that of the great spotted kingfisher, already referred to as found only in the Himalayas and Japan.

Comparison of the Faunas of Hainan, Formosa, and Japan.—The island of Hainan on the extreme south of China, and only separated from the mainland by a strait fifteen miles wide, appears to have considerable similarity to Formosa, inasmuch as it possesses seventeen peculiar land-birds (out of 130 obtained by Mr. Swinhoe), two of which are close allies of Formosan species, while two others are identical. We also find four species whose nearest allies are in the Himalayas. Our knowledge of this island and of the adjacent coast of China is not yet sufficient to enable us to form an accurate judgment of its relations, but it seems probable that it was separated from the continent at, approximately, the same epoch as Formosa and Japan, and that the special features of each of these islands are mainly due to their geographical position. Formosa, being more completely isolated than either of the others, possesses a larger proportion of peculiar species of birds, while its tropical situation and lofty mountain ranges have enabled it to preserve an unusual number of Himalayan and Malayan forms. Japan, almost equally isolated towards the south, and having a much greater variety of climate as well as a much larger area, possesses about an equal number of mammalia with Formosa, and an even larger proportion of peculiar species. Its birds, however, though more numerous are less peculiar; and this is probably due to the large number of species which migrate northwards in summer, and find it easy to enter Japan through the Kurile Isles or Saghalien.[148 - Captain Blakiston has shown that the northern island—Yezo—is much more temperate and less peculiar in its zoology than the central and southern islands. This is no doubt dependent chiefly on the considerable change of climate that occurs on passing the Tsu-garu strait.] Japan too, is largely peopled by those northern types which have an unusually wide range, and which, being almost all migratory, are accustomed to cross over seas of moderate extent. The regular or occasional influx of these species prevents the formation of special insular races, such as are almost always produced when a portion of the population of a species remains for a considerable time completely isolated. We thus have explained the curious fact, that while the mammalia of the two islands are almost equally peculiar, (those of Japan being most so in the present state of our knowledge), the birds of Formosa show a far greater number of peculiar species than those of Japan.

General Remarks on Recent Continental Islands.—We have now briefly sketched the zoological peculiarities of an illustrative series of recent continental islands, commencing with one of the most recent—Great Britain—in which the process of formation of peculiar species has only just commenced, and terminating with Formosa, probably one of the most ancient of the series, and which accordingly presents us with a very large proportion of peculiar species, not only in its mammalia, which have no means of crossing the wide strait which separates it from the mainland, but also in its birds, many of which are quite able to cross over.

Here, too, we obtain a glimpse of the way in which species die out and are replaced by others, which quite agrees with what the theory of evolution assures us must have occurred. On a continent, the process of extinction will generally take effect on the circumference of the area of distribution, because it is there that the species comes into contact with such adverse conditions or competing forms as prevent it from advancing further. A very slight change will evidently turn the scale and cause the species to contract its range, and this usually goes on till it is reduced to a very restricted area, and finally becomes extinct. It may conceivably happen (and almost certainly has sometimes happened) that the process of restriction of range by adverse conditions may act in one direction only, and over a limited district, so as ultimately to divide the specific area into two separated parts, in each of which a portion of the species will continue to maintain itself. We have seen that there is reason to believe that this has occurred in a very few cases both in North America and in Northern Asia. (See pp. 65 (#x3_x_3_i51)-68 (#x4_x_4_i5).) But the same thing has certainly occurred in a considerable number of cases, only it has resulted in the divided areas being occupied by representative forms instead of by the very same species. The cause of this is very easy to understand. We have already shown that there is a large amount of local variation in a considerable number of species, and we may be sure that were it not for the constant intermingling and intercrossing of the individuals inhabiting adjacent localities this tendency to local variation in adaptation to slightly different conditions, would soon form distinct races. But as soon as the area is divided into two portions the intercrossing is stopped, and the usual result is that two closely allied races, classed as representative species, become formed. Such pairs of allied species on the two sides of a continent, or in two detached areas, are very numerous; and their existence is only explicable on the supposition that they are descendants of a parent form which once occupied an area comprising that of both of them,—that this area then became discontinuous,—and, lastly, that, as a consequence of the discontinuity, the two sections of the parent species became segregated into distinct races or new species.

Now, when the division of the area leaves one portion of the species in an island, a similar modification of the species, either in the island or in the continent, occurs, resulting in closely-allied but distinct forms; and such forms are, as we have seen, highly characteristic of island-faunas. But islands also favour the occasional preservation of the unchanged species—a phenomenon which very rarely occurs in continents. This is probably due to the absence of competition in islands, so that the parent species there maintains itself unchanged, while the continental portion, by the force of that competition, is driven back to some remote mountain area, where it also obtains a comparative freedom from competition. Thus may be explained the curious fact, that the species common to Formosa and India are generally confined to limited areas in the Himalayas, or in other cases are found only in remote islands, as Japan or Hainan.

The distribution and affinities of the animals of continental islands thus throws much light on that obscure subject—the decay and extinction of species; while the numerous and delicate gradations in the modification of the continental species, from perfect identity, through slight varieties, local forms, and insular races, to well-defined species and even distinct genera, afford an overwhelming mass of evidence in favour of the theory of "descent with modification."

We shall now pass on to another class of islands, which, though originally forming parts of continents, were separated from them at very remote epochs. This antiquity is clearly manifested in their existing faunas, which present many peculiarities, and offer some most curious problems to the student of distribution.

CHAPTER XIX

ANCIENT CONTINENTAL ISLANDS: THE MADAGASCAR GROUP

Remarks on Ancient Continental Islands—Physical Features of Madagascar—Biological Features of Madagascar—Mammalia—Reptiles—Relation of Madagascar to Africa—Early History of Africa and Madagascar—Anomalies of Distribution and How to Explain Them—The Birds of Madagascar as Indicating a Supposed Lemurian Continent—Submerged Islands between Madagascar and India—Concluding Remarks on "Lemuria"—The Mascarene Islands—The Comoro Islands—The Seychelles Archipelago—Birds of the Seychelles—Reptiles and Amphibia—Freshwater Fishes—Land Shells—Mauritius, Bourbon, and Rodriguez—Birds—Extinct Birds and their Probable Origin—Reptiles—Flora of Madagascar and the Mascarene Islands—Curious Relations of Mascarene Plants—Endemic Genera of Mauritius and Seychelles—Fragmentary Character of the Mascarene Flora—Flora of Madagascar Allied to that of South Africa—Preponderance of Ferns in the Mascarene Flora—Concluding Remarks on the Madagascar Group.

We have now to consider the phenomena presented by a very distinct class of islands—those which, although once forming part of a continent, have been separated from it at a remote epoch when its animal forms were very unlike what they are now. Such islands preserve to us the record of a by-gone world,—of a period when many of the higher types had not yet come into existence and when the distribution of others was very different from what prevails at the present day. The problem presented by these ancient islands is often complicated by the changes they themselves have undergone since the period of their separation. A partial subsidence will have led to the extinction of some of the types that were originally preserved, and may leave the ancient fauna in a very fragmentary state; while subsequent elevations may have brought it so near to the continent that some immigration even of mammalia may have taken place. If these elevations and subsidences occurred several times over, though never to such an extent as again to unite the island with the continent, it is evident that a very complex result might be produced; for besides the relics of the ancient fauna, we might have successive immigrations from surrounding lands reaching down to the era of existing species. Bearing in mind these possible changes, we shall generally be able to arrive at a fair conjectural solution of the phenomena of distribution presented by these ancient islands.

Undoubtedly the most interesting of such islands, and that which exhibits their chief peculiarities in the greatest perfection, is Madagascar, and we shall therefore enter somewhat fully into its biological and physical history.

Physical Features of Madagascar.—This great island is situated about 250 miles from the east coast of Africa, and extends from 12° to 25½° S. Lat. It is almost exactly 1,000 miles long, with an extreme width of 360 and an average width of more than 260 miles. A lofty granitic plateau, from eighty to 160 miles wide and from 3,000 to 5,000 feet high, occupies its central portion, on which rise peaks and domes of basalt and granite to a height of nearly 9,000 feet; and there are also numerous extinct volcanic cones and craters. All round the island, but especially developed on the south and west, are plains of a few hundred feet elevation, formed of rocks which are shown by their fossils to be of Jurassic age, or at all events to belong to somewhere near the middle portion of the Secondary period. The higher granitic plateau consists of bare undulating moors, while the lower Secondary plains are more or less wooded; and there is here also a continuous belt of dense forest, varying from six or eight to fifty miles wide, encircling the whole island, usually at about thirty miles distance from the coast but in the north-east coming down to the sea-shore.

The sea around Madagascar, when the shallow bank on which it stands is passed, is generally deep. This 100-fathom bank is only from one to three miles wide on the east side, but on the west it is much broader, and stretches out opposite Mozambique to a distance of about eighty miles. The Mozambique Channel is rather more than 1,000 fathoms deep, but there is only a narrow belt of this depth opposite Mozambique, and still narrower where the Comoro Islands and adjacent shoals seem to form stepping-stones to the continent of Africa. The 1,000-fathom line includes Aldabra and the small Farquhar Islands to the north of Madagascar; while to the east the sea deepens rapidly to the 1,000-fathom line and then more slowly, a profound channel of 2,400 fathoms separating Madagascar from Bourbon and Mauritius. To the north-east of Mauritius are a series of extensive shoals forming four large banks less than 100 fathoms below the surface, while the 1,000-fathom line includes them all, with an area about half that of Madagascar itself. A little further north is the Seychelles group, also standing on an extensive 1,000-fathom bank, while all round the sea is more than 2,000 fathoms deep.

It seems probable, then, that to the north-east of Madagascar there was once a series of very large islands, separated from it by not very wide straits; while eastward across the Indian Ocean we find the Chagos and Maldive coral atolls, perhaps marking the position of other large islands, which together would form a line of communication, by comparatively easy stages of 400 or 500 miles each between Madagascar and India. These submerged islands, as shown in our map at p. 424 (#x15_x_15_i156), are of great importance in explaining some anomalous features in the zoology of this great island.

If the rocks of Secondary age which form a belt around the island are held to indicate that Madagascar was once of less extent than it is now (though this by no means necessarily follows), we have also evidence that it has recently been considerably larger; for along the east coast there is an extensive barrier coral-reef about 350 miles in length, and varying in distance from the land from a quarter of a mile to three or four miles. This seems to indicate recent subsidence; while we have no record of raised coral rocks inland which would certainly mark any recent elevation, though fringing coral reefs surround a considerable portion of the northern, eastern, and south-western coasts. We may therefore conclude that during Tertiary times the island was usually as large as, and often probably much larger than, it is now.

MAP OF THE MADAGASCAR GROUP, SHOWING DEPTHS OF SEA.

In this Map the depth of the sea is shown by three tints; the lightest tint indicating from 0 to 100 fathoms, the medium tint from 100 to 1,000 fathoms, the dark tint more than 1,000 fathoms.

Biological Features of Madagascar.—Madagascar possesses an exceedingly rich and beautiful fauna and flora, rivalling in some groups most tropical countries of equal extent, and even when poor in species, of surpassing interest from the singularity, the isolation, or the beauty of its forms of life. In order to exhibit the full peculiarity of its natural history and the nature of the problems it offers to the biological student, we must give an outline of its more important animal forms in systematic order.

Mammalia.—Madagascar possesses no less than sixty-six species of mammals—a certain proof in itself that the island has once formed part of a continent; but the character of these animals is very extraordinary and altogether different from the assemblage now found in Africa or in any other existing continent. Africa is now most prominently characterised by its monkeys, apes, and baboons; by its lions, leopards, and hyænas; by its zebras, rhinoceroses, elephants, buffaloes, giraffes, and numerous species of antelopes. But no one of these animals, nor any thing like them, is found in Madagascar, and thus our first impression would be that it could never have been united with the African continent. But, as the tigers, the bears, the tapirs, the deer, and the numerous squirrels of Asia are equally absent, there seems no probability of its having been united with that continent. Let us then see to what groups the mammalia of Madagascar belong, and where we must look for their probable allies.

First and most important are the lemurs, consisting of six genera and thirty-three species, thus comprising just half the entire mammalian population of the island. This group of lowly-organised and very ancient creatures still exists scattered over a wide area; but they are nowhere so abundant as in the island of Madagascar. They are found from West Africa to India, Ceylon, and the Malay Archipelago, consisting of a number of isolated genera and species, which appear to maintain their existence by their nocturnal and arboreal habits, and by haunting dense forests. It can hardly be said that the African forms of lemurs are more nearly allied to those of Madagascar than are the Asiatic, the whole series appearing to be the disconnected fragments of a once more compact and extensive group of animals.

Next, we have about a dozen species of Insectivora, consisting of one shrew, a group distributed over all the great continents; and five genera of a peculiar family, Centetidæ, which family exists nowhere else on the globe except in the two largest West Indian Islands, Cuba and Hayti, thus adding still further to our embarrassment in seeking for the original home of the Madagascar fauna.

We then come to the Carnivora, which are represented by a peculiar cat-like animal, Cryptoprocta, forming a distinct family, and having no close allies in any part of the globe; and eight civets belonging to four peculiar genera. Here we first meet with some decided indications of an African origin; for the civet family is more abundant in this continent than in Asia, and some of the Madagascar genera seem to be decidedly allied to African groups—as, for example, Eupleres to Suricata and Crossarchus.[149 - See Dr. J. E. Gray's "Revision of the Viverridæ," in Proc. Zool. Soc. 1864, p. 507.]

The Rodents consist only of four rats and mice of peculiar genera, one of which is said to be allied to an American genus; and lastly we have a river-hog of the African genus Potamochærus, and a small sub-fossil hippopotamus, both of which being semi-aquatic animals might easily have reached the island from Africa, by way of the Comoros, without any actual land connection.[150 - Some of the Bats of Madagascar and East Africa are said to have their nearest allies in Australia. (See Dobson in Nature, Vol. XXX. p. 575.)]

Reptiles of Madagascar.—Passing over the birds for the present, as not so clearly demonstrating land-connection, let us see what indications are afforded by the reptiles. The large and universally distributed family of Colubrine snakes is represented in Madagascar, not by African or Asiatic genera, but by two American genera—Philodryas and Heterodon, and by Herpetodryas, a genus found in America and China. The other genera are all peculiar, and belong mostly to widespread tropical families; but two families—Lycodontidæ and Viperidæ, both abundant in Africa and the Eastern tropics—are absent. Lizards are mostly represented by peculiar genera of African or tropical families, but several African genera are represented by peculiar species, and there are also some species belonging to two American genera of the Iguanidæ, a family which is exclusively American; while a genus of geckoes, inhabiting America and Australia, also occurs in Madagascar.

Relation of Madagascar to Africa.—These facts taken all together are certainly very extraordinary, since they show in a considerable number of cases as much affinity with America as with Africa; while the most striking and characteristic groups of animals now inhabiting Africa are entirely wanting in Madagascar. Let us first deal with this fact, of the absence of so many of the most dominant African groups. The explanation of this deficiency is by no means difficult, for the rich deposits of fossil mammals of Miocene or Pliocene age in France, Germany, Greece, and North-west India, have demonstrated the fact that all the great African mammals then inhabited Europe and temperate Asia. We also know that a little earlier (in Eocene times) tropical Africa was cut off from Europe and Asia by a sea stretching from the Atlantic to the Bay of Bengal, at which time Africa must have formed a detached island-continent such as Australia is now, and probably, like it, very poor in the higher forms of life. Coupling these two facts, the inference seems clear, that all the higher types of mammalia were developed in the great Euro-Asiatic continent (which then included Northern Africa), and that they only migrated into tropical Africa when the two continents became united by the upheaval of the sea-bottom, probably in the latter portion of the Miocene or early in the Pliocene period.[151 - This view was, I believe, first advanced by Professor Huxley in his "Anniversary Address to the Geological Society," in 1870. He says:—"In fact the Miocene mammalian fauna of Europe and the Himalayan regions contain, associated together, the types which are at present separately located in the South African and Indian provinces of Arctogæa. Now there is every reason to believe, on other grounds, that both Hindostan south of the Ganges, and Africa south of the Sahara, were separated by a wide sea from Europe and North Asia during the Middle and Upper Eocene epochs. Hence it becomes highly probable that the well-known similarities, and no less remarkable differences, between the present faunæ of India and South Africa have arisen in some such fashion as the following: Some time during the Miocene epoch, the bottom of the nummulitic sea was upheaved and converted into dry land in the direction of a line extending from Abyssinia to the mouth of the Ganges. By this means the Dekkan on the one hand and South Africa on the other, became connected with the Miocene dry land and with one another. The Miocene mammals spread gradually over this intermediate dry land; and if the condition of its eastern and western ends offered as wide contrasts as the valleys of the Ganges and Arabia do now, many forms which made their way into Africa must have been different from those which reached the Dekkan, while others might pass into both these sub-provinces."This question is fully discussed in my Geographical Distribution of Animals (Vol. I., p. 285), where I expressed views somewhat different from those of Professor Huxley, and made some slight errors which are corrected in the present work. As I did not then refer to Professor Huxley's prior statement of the theory of Miocene immigration into Africa (which I had read but the reference to which I could not recall) I am happy to give his views here.]

It is clear, therefore, that if Madagascar had once formed part of Africa, but had been separated from it before Africa was united to Europe and Asia, it would not contain any of those kinds of animals which then first entered the country. But, besides the African mammals, we know that some birds now confined to Africa then inhabited Europe, and we may therefore fairly assume that all the more important groups of birds, reptiles, and insects, now abundant in Africa but absent from Madagascar, formed no part of the original African fauna, but entered the country only after it was joined to Europe and Asia.

Early History of Africa and Madagascar.—We have seen that Madagascar contains an abundance of mammals, and that most of them are of types either peculiar to, or existing also in, Africa; it follows that that continent must have had an earlier union with Europe, Asia, or America, or it could never have obtained any mammals at all.

Now these ancient African mammals are Lemurs, Insectivora, and small Carnivora, chiefly Viverridæ; and all these groups are known to have inhabited Europe in Eocene and Miocene times; and that the union was with Europe rather than with America is clearly proved by the fact that even the insectivorous Centetidæ, now confined to Madagascar and the West Indies, inhabited France in the Lower Miocene period, while the Viverridæ, or civets, which form so important a part of the fauna of Madagascar as well as of Africa, were abundant in Europe throughout the whole Tertiary period, but are not known to have ever lived in any part of the American continent. We here see the application of the principle which we have already fully proved and illustrated (Chapter IV., p. 60 (#x3_x_3_i42)), that all extensive groups have a wide range at the period of their maximum development; but as they decay their area of distribution diminishes or breaks up into detached fragments, which one after another disappear till the group becomes extinct. Those animal forms which we now find isolated in Madagascar and other remote portions of the globe all belong to ancient groups which are in a decaying or nearly extinct condition, while those which are absent from it belong to more recent and more highly-developed types, which range over extensive and continuous areas, but have had no opportunity of reaching the more ancient continental islands.

Anomalies of Distribution and How to Explain Them.—If these considerations have any weight, it follows that there is no reason whatever for supposing any former direct connection between Madagascar and the Greater Antilles merely because the insectivorous Centetidæ now exist only in these two groups of islands; for we know that the ancestors of this family must once have had a much wider range, which almost certainly extended over the great northern continents. We might as reasonably suppose a land-connection across the Pacific to account for the camels of Asia having their nearest existing allies in the llamas and alpacas of the Peruvian Andes, and another between Sumatra and Brazil, in order that the ancestral tapir of one country might have passed over to the other. In both these cases we have ample proof of the former wide extension of the group. Extinct camels of numerous species abounded in North America in Miocene, Pliocene, and even Post-pliocene times, and one has also been found in North-western India, but none whatever among all the rich deposits of mammalia in Europe. We are thus told, as clearly as possible, that from the North American continent as a centre the camel tribe spread westward, over now-submerged land at the shallow Behring Straits and Kamschatka Sea, into Asia, and southward along the Andes into South America. Tapirs are even more interesting and instructive. Their remotest known ancestors appear in Western Europe in the early portion of the Eocene period; in the latter Eocene and the Miocene other forms occur both in Europe and North America. These seem to have become extinct in North America, while in Europe they developed largely into many forms of true tapirs, which at a much later period found their way again to North, and thence to South, America, where their remains are found in caves and gravel deposits. It is an instructive fact that in the Eastern continent, where they were once so abundant, they have dwindled down to a single species, existing in small numbers in the Malay Peninsula, Sumatra, and Borneo only; while in the Western continent, where they are comparatively recent immigrants, they occupy a much larger area, and are represented by three or four distinct species. Who could possibly have imagined such migrations, and extinctions, and changes of distribution as are demonstrated in the case of the tapirs, if we had only the distribution of the existing species to found an opinion upon? Such cases as these—and there are many others equally striking—show us with the greatest distinctness how nature has worked in bringing about the examples of anomalous distribution that everywhere meet us; and we must, on every ground of philosophy and common sense, apply the same method of interpretation to the more numerous instances of anomalous distribution we discover among such groups as reptiles, birds, and insects, where we rarely have any direct evidence of their past migrations through the discovery of fossil remains. Whenever we can trace the past history of any group of terrestrial animals, we invariably find that its actual distribution can be explained by migrations effected by means of comparatively slight modifications of our existing continents. In no single case have we any direct evidence that the distribution of land and sea has been radically changed during the whole lapse of the Tertiary and Secondary periods, while, as we have already shown in our fifth chapter, the testimony of geology itself, if fairly interpreted, upholds the same theory of the stability of our continents and the permanence of our oceans. Yet so easy and pleasant is it to speculate on former changes of land and sea with which to cut the gordian knot offered by anomalies of distribution, that we still continually meet with suggestions of former continents stretching in every direction across the deepest oceans, in order to explain the presence in remote parts of the globe of the same genera even of plants or of insects—organisms which possess such exceptional facilities both for terrestrial, aërial, and oceanic transport, and of whose distribution in early geological periods we generally know little or nothing.

The Birds of Madagascar, as Indicating a Supposed Lemurian Continent.—Having thus shown how the distribution of the land mammalia and reptiles of Madagascar may be well explained by the supposition of a union with Africa before the greater part of its existing fauna had reached it, we have now to consider whether, as some ornithologists think, the distribution and affinities of the birds present an insuperable objection to this view, and require the adoption of a hypothetical continent—Lemuria—extending from Madagascar to Ceylon and the Malay Islands.

There are about one hundred and fifty land birds known from the island of Madagascar, of which a hundred and twenty-seven are peculiar; and about half of these peculiar species belong to peculiar genera, many of which are extremely isolated, so that it is often difficult to class them in any of the recognised families, or to determine their affinities to any living birds.[152 - The total number of Madagascar birds is 238, of which 129 are absolutely peculiar to the island, as are thirty-five of the genera. All the peculiar birds but two are land birds. These are the numbers given in M. Grandidier's great work on Madagascar.] Among the other moiety, belonging to known genera, we find fifteen which have undoubted African affinities, while five or six are as decidedly Oriental, the genera or nearest allied species being found in India or the Malay Islands. It is on the presence of these peculiar Indian types that Dr. Hartlaub, in his recent work on the Birds of Madagascar and the Adjacent Islands, lays great stress, as proving the former existence of "Lemuria"; while he considers the absence of such peculiar African families as the plantain-eaters, glossy-starlings, ox-peckers, barbets, honey-guides, hornbills, and bustards—besides a host of peculiar African genera—as sufficiently disproving the statement in my Geographical Distribution of Animals that Madagascar is "more nearly related to the Ethiopian than to any other region," and that its fauna was evidently "mainly derived from Africa."

But the absence of the numerous peculiar groups of African birds is so exactly parallel to the same phenomenon among mammals, that we are justified in imputing it to the same cause, the more especially as some of the very groups that are wanting—the plantain-eaters and the trogons, for example,—are actually known to have inhabited Europe along with the large mammalia which subsequently migrated to Africa. As to the peculiarly Eastern genera—such as Copsychus and Hypsipetes, with a Dicrurus, a Ploceus, a Cisticola, and a Scops, all closely allied to Indian or Malayan species—although very striking to the ornithologist, they certainly do not outweigh the fourteen African genera found in Madagascar. Their presence may, moreover, be accounted for more satisfactorily than by means of an ancient Lemurian continent, which, even if granted, would not explain the very facts adduced in its support.
<< 1 ... 24 25 26 27 28 29 30 31 32 ... 42 >>
На страницу:
28 из 42