Оценить:
 Рейтинг: 0

Island Life; Or, The Phenomena and Causes of Insular Faunas and Floras

Автор
Год написания книги
2018
<< 1 ... 27 28 29 30 31 32 33 34 35 ... 42 >>
На страницу:
31 из 42
Настройки чтения
Размер шрифта
Высота строк
Поля

The position of New Zealand, in the great Southern Ocean, about 1,200 miles distant from the Australian continent, is very isolated. It is surrounded by a moderately deep ocean; but the form of the sea-bottom is peculiar, and may help us in the solution of some of the anomalies presented by its living productions. The line of 200 fathoms encloses the two islands and extends their area considerably; but the 1,000-fathom line, which indicates the land-area that would be produced if the sea-bottom were elevated 6,000 feet, has a very remarkable conformation, extending in a broad mass westward and northward, then sending out a great arm reaching to beyond Lord Howe's Island. Norfolk Island is situated on a moderate-sized bank, while two others, much more extensive, to the north-west approach the great barrier reef, which here carries the 1,000-fathom line more than 300 miles from the coast. It is probable that a bank, less than 1,500 fathoms below the surface, extends over this area, thus forming a connection with tropical Australia and New Guinea. Temperate Australia, on the other hand, is divided from New Zealand by an oceanic gulf about 700 miles wide and between 2,000 and 3,000 fathoms deep. The 2,000-fathom line embraces all the islands immediately round New Zealand as far as the Fijis to the north, while a submarine plateau at a depth somewhere between one and two thousand fathoms stretches southward to the Antarctic continent. Judging from these indications, we should say that the most probable ancient connections of New Zealand were with tropical Australia, New Caledonia, and the Fiji Islands, and perhaps at a still more remote epoch, with the great Southern continent by means of intervening lands and islands; and we shall find that a land-connection or near approximation in these two directions, at remote periods, will serve to explain many of the remarkable anomalies which these islands present.

Zoological Character of New Zealand.—We see, then, that both geologically and geographically New Zealand has more of the character of a "continental" than of an "oceanic" island, yet its zoological characteristics are such as almost to bring it within the latter category—and it is this which gives it its anomalous character. It is usually considered to possess no indigenous mammalia; it has no snakes, and only one frog; it possesses (living or quite recently extinct) an extensive group of birds incapable of flight; and its productions generally are wonderfully isolated, and seem to bear no predominant or close relation to those of Australia or any other continent. These are the characteristics of an oceanic island; and thus we find that the inferences from its physical structure and those from its forms of life directly contradict each other. Let us see how far a closer examination of the latter will enable us to account for this apparent contradiction.

Mammalia of New Zealand.—The only undoubtedly indigenous mammalia appear to be two species of bats, one of which (Scotophilus tuberculatus) is, according to Mr. Dobson, identical with an Australian form, while the other (Mystacina tuberculata) forms a very remarkable and isolated genus of Emballonuridæ, a family which extends throughout all the tropical regions of the globe. The genus Mystacina was formerly considered to belong to the American Phyllostomidæ, but this has been shown to be an error.[169 - Dobson on the Classification of Chiroptera (Ann. and Mag. of Nat. Hist. Nov. 1875).] The poverty of New Zealand in bats is very remarkable when compared with our own islands where there are at least twelve distinct species, though we have a far less favourable climate.

Of the existence of truly indigenous land mammals in New Zealand there is at present no positive evidence, but there is some reason to believe that one if not two species may be found there. The Maoris say that before Europeans came to their country a forest-rat abounded and was largely used for food. They believe that their ancestors brought it with them when they first came to the country; but it has now become almost, if not quite, exterminated by the European brown rat. What this native animal was is still somewhat doubtful. Several specimens have been caught at different times which have been declared by the natives to be the true Kiore Maori—as they term it, but these have usually proved on examination to be either the European black rat or some of the native Australian rats which now often find their way on board ships. But within the last few years many skulls of a rat have been obtained from the old Maori cooking-places, and from a cave associated with moa bones; and Captain Hutton, who has examined them, states that they belong to a true Mus, but differ from the Mus rattus. This animal might have been on the islands when the Maoris first arrived, and in that case would be truly indigenous; while the Maori legend of their "ancestors" bringing the rat from their Polynesian home may be altogether a myth invented to account for its presence in the islands, because the only other land mammal which they knew—the dog—was certainly so brought. The question can only be settled by the discovery of remains of a rat in some deposit of an age decidedly anterior to the first arrival of the Maori race in New Zealand.[170 - See Buller, "On the New Zealand Rat," Trans. of the N. Z. Institute (1870), Vol. III. p. 1, and Vol. IX. p. 348; and Hutton, "On the Geographical Relations of the New Zealand Fauna," Trans. N. Z. Instit. 1872, p. 229.]

Much more interesting is the reported existence in the mountains of the South Island of a small otter-like animal. Dr. Haast has seen its tracks, resembling those of our European otter, at a height of 3,000 feet above the sea in a region never before trodden by man; and the animal itself was seen by two gentlemen near Lake Heron, about seventy miles due west of Christchurch. It was described as being dark brown and the size of a large rabbit. On being struck at with a whip, it uttered a shrill yelping sound and disappeared in the water.[171 - Hochstetter's New Zealand, p. 161, note.] An animal seen so closely as to be struck at with a whip could hardly have been mistaken for a dog—the only other animal that it could possibly be supposed to have been, and a dog would certainly not have "disappeared in the water." This account, as well as the footsteps, point to an aquatic animal; and if it now frequents only the high alpine lakes and streams, this might explain why it has never yet been captured. Hochstetter also states that it has a native name—Waitoteke—a striking evidence of its actual existence, while a gentleman who lived many years in the district assures me that it is universally believed in by residents in that part of New Zealand. The actual capture of this animal and the determination of its characters and affinities could not fail to aid us greatly in our speculations as to the nature and origin of the New Zealand fauna.[172 - The animal described by Captain Cook as having been seen at Pickersgill Harbour in Dusky Bay (Cook's 2nd Voyage, Vol. I. p. 98) may have been the same creature. He says, "A four-footed animal was seen by three or four of our people, but as no two gave the same description of it, I cannot say what kind it is. All, however, agreed that it was about the size of a cat, with short legs, and of a mouse colour. One of the seamen, and he who had the best view of it, said it had a bushy tail, and was the most like a jackal of any animal he knew." It is suggestive that, so far as the points on which "all agreed"—the size and the dark colour—this description would answer well to the animal so recently seen, while the "short legs" correspond to the otter-like tracks, and the thick tail of an otter-like animal may well have appeared "bushy" when the fur was dry. It has been suggested that it was only one of the native dogs; but as none of those who saw it took it for a dog, and the points on which they all agreed are not dog-like, we can hardly accept this explanation; while the actual existence of an unknown animal in New Zealand of corresponding size and colour is confirmed by this account of a similar animal having been seen about a century ago.]

Wingless Birds, Living and Extinct.—Almost equally valuable with mammalia in affording indications of geographical changes are the wingless birds for which New Zealand is so remarkable. These consist of four species of Apteryx, called by the natives "kiwis,"—creatures which hardly look like birds owing to the apparent absence (externally) of tail or wings and the dense covering of hair-like feathers. They vary in size from that of a small fowl up to that of a turkey, and have a long slightly curved bill, somewhat resembling that of the snipe or ibis. Two species appear to be confined to the South Island, and one to the North Island, but all are becoming scarce, and they will no doubt gradually become extinct. These birds are generally classed with the Struthiones or ostrich tribe, but they form a distinct family, and in many respects differ greatly from all other known birds.

But besides these, a number of other wingless birds, called "moas," inhabited New Zealand during the period of human occupation, and have only recently become extinct. These were much larger birds than the kiwis, and some of them were even larger than the ostrich, a specimen of Dinornis maximus mounted in the British Museum in its natural attitude being eleven feet high. They agreed, however, with the living Apteryx in the character of the pelvis and some other parts of the skeleton, while in their short bill and in some important structural features they resembled the emu of Australia and the cassowaries of New Guinea.[173 - Owen, "On the Genus Dinornis," Trans. Zool. Soc. Vol. X. p. 184. Mivart, "On the Axial Skeleton of the Struthionidæ," Trans. Zool. Soc. Vol. X. p. 51.] No less than eleven distinct species of these birds have now been discovered; and their remains exist in such abundance—in recent fluviatile deposits, in old native cooking places, and even scattered on the surface of the ground—that complete skeletons of several of them have been put together, illustrating various periods of growth from the chick up to the adult bird. Feathers have also been found attached to portions of the skin, as well as the stones swallowed by the birds to assist digestion, and eggs, some containing portions of the embryo bird; so that everything confirms the statements of the Maoris—that their ancestors found these birds in abundance on the islands, that they hunted them for food, and that they finally exterminated them only a short time before the arrival of Europeans.[174 - The recent existence of the Moa and its having been exterminated by the Maoris appears to be at length set at rest by the statement of Mr. John White, a gentleman who has been collecting materials for a history of the natives for thirty-five years, who has been initiated by their priests into all their mysteries, and is said to "know more about the history, habits, and customs of the Maoris than they do themselves." His information on this subject was obtained from old natives long before the controversy on the subject arose. He says that the histories and songs of the Maoris abound in allusions to the Moa, and that they were able to give full accounts of "its habits, food, the season of the year it was killed, its appearance, strength, and all the numerous ceremonies which were enacted by the natives before they began the hunt, the mode of hunting, how cut up, how cooked, and what wood was used in the cooking, with an account of its nest, and how the nest was made, where it usually lived, &c." Two pages are occupied by these details, but they are only given from memory, and Mr. White promises a full account from his MSS. Many of the details given correspond with facts ascertained from the discovery of native cooking places with Moas' bones; and it seems quite incredible that such an elaborate and detailed account should be all invention. (See Transactions of the New Zealand Institute, Vol. VIII. p. 79.)] Bones of Apteryx are also found fossil, but apparently of the same species as the living birds. How far back in geological time these creatures or their ancestral types lived in New Zealand we have as yet no evidence to show. Some specimens have been found under a considerable depth of fluviatile deposits which may be of Quaternary or even of Pliocene age; but this evidently affords us no approximation to the time required for the origin and development of such highly peculiar insular forms.

Past Changes of New Zealand deduced from its Wingless Birds.—It has been well observed by Captain Hutton, in his interesting paper already referred to, that the occurrence of such a number of species of Struthious birds living together in so small a country as New Zealand is altogether unparalleled elsewhere on the globe. This is even more remarkable when we consider that the species are not equally divided between the two islands, for remains of no less than ten out of the eleven known species of Dinornis have been found in a single swamp in the South Island, where also three of the species of Apteryx occur. The New Zealand Struthiones, in fact, very nearly equal in number those of all the rest of the world, and nowhere else do more than three species occur in any one continent or island, while no more than two ever occur in the same district. Thus, there appear to be two closely allied species of ostriches inhabiting Africa and South-western Asia respectively. South America has three species of Rhea, each in a separate district. Australia has an eastern and a western variety of emu, and a cassowary in the north; while eight other cassowaries are known from the islands north of Australia—one from Ceram, two from the Aru Islands, one from Jobie, one from New Britain, and three from New Guinea—but of these last one is confined to the northern and another to the southern part of the island.

This law, of the distribution of allied species in separate areas—which is found to apply more or less accurately to all classes of animals—is so entirely opposed to the crowding together of no less that fifteen species of wingless birds in the small area of New Zealand, that the idea is at once suggested of great geographical changes. Captain Hutton points out that if the islands from Ceram to New Britain were to become joined together, we should have a large number of species of cassowary (perhaps several more than are yet discovered) in one land area. If now this land were gradually to be submerged, leaving a central elevated region, the different species would become crowded together in this portion just as the moas and kiwis were in New Zealand. But we also require, at some remote epoch, a more or less complete union of the islands now inhabited by the separate species of cassowaries, in order that the common ancestral form which afterwards became modified into these species, could have reached the places where they are now found; and this gives us an idea of the complete series of changes through which New Zealand is believed to have passed in order to bring about its abnormally dense population of wingless birds. First, we must suppose a land connection with some country inhabited by struthious birds, from which the ancestral forms might be derived; secondly, a separation into many considerable islands, in which the various distinct species might become differentiated; thirdly, an elevation bringing about the union of these islands to unite the distinct species in one area; and fourthly, a subsidence of a large part of the area, leaving the present islands with the various species crowded together.

If New Zealand has really gone through such a series of changes as here suggested, some proofs of it might perhaps be obtained in the outlying islands which were once, presumably, joined with it. And this gives great importance to the statement of the aborigines of the Chatham Islands, that the Apteryx formerly lived there but was exterminated about 1835. It is to be hoped that some search will be made here and also in Norfolk Island, in both of which it is not improbable remains either of Apteryx or Dinornis might be discovered.

So far we find nothing to object to in the speculations of Captain Hutton, with which, on the contrary, we almost wholly concur; but we cannot follow him when he goes on to suggest an Antarctic continent uniting New Zealand and Australia with South America, and probably also with South Africa, in order to explain the existing distribution of struthious birds. Our best anatomists, as we have seen, agree that both Dinornis and Apteryx are more nearly allied to the cassowaries and emus than to the ostriches and rheas; and we see that the form of the sea-bottom suggests a former connection with North Australia and New Guinea—the very region where these types most abound, and where in all probability they originated. The suggestion that all the struthious birds of the world sprang from a common ancestor at no very remote period, and that their existing distribution is due to direct land communication between the countries they now inhabit, is one utterly opposed to all sound principles of reasoning in questions of geographical distribution. For it depends upon two assumptions, both of which are at least doubtful, if not certainly false—the first, that their distribution over the globe has never in past ages been very different from what it is now; and the second, that the ancestral forms of these birds never had the power of flight. As to the first assumption, we have found in almost every case that groups now scattered over two or more continents formerly lived in intervening areas of existing land. Thus the marsupials of South America and Australia are connected by forms which lived in North America and Europe; the camels of Asia and the llamas of the Andes had many extinct common ancestors in North America; the lemurs of Africa and Asia had their ancestors in Europe, as had the trogons of South America, Africa, and tropical Asia. But besides this general evidence we have direct proof that the struthious birds had a wider range in past times than now. Remains of extinct rheas have been found in Central Brazil, and those of ostriches in North India; while remains, believed to be of struthious birds, are found in the Eocene deposits of England; and the Cretaceous rocks of North America have yielded the extraordinary toothed bird, Hesperornis, which Professor O. Marsh declares to have been "a carnivorous swimming ostrich."

As to the second point, we have the remarkable fact that all known birds of this group have not only the rudiments of wing-bones, but also the rudiments of wings, that is, an external limb bearing rigid quills or largely-developed plumes. In the cassowary these wing-feathers are reduced to long spines like porcupine-quills, while even in the Apteryx, the minute external wing bears a series of nearly twenty stiff quill-like feathers.[175 - See fig. in Trans. of N. Z. Institute, Vol. III., plate 12b. fig. 2.] These facts render it almost certain that the struthious birds do not owe their imperfect wings to a direct evolution from a reptilian type, but to a retrograde development from some low form of winged birds, analogous to that which has produced the dodo and the solitaire from the more highly-developed pigeon-type. Professor Marsh has proved, that so far back as the Cretaceous period, the two great forms of birds—those with a keeled sternum and fairly-developed wings, and those with a convex keel-less sternum and rudimentary wings—already existed side by side; while in the still earlier Archæopteryx of the Jurassic period we have a bird with well-developed wings, and therefore probably with a keeled sternum. We are evidently, therefore, very far from a knowledge of the earliest stages of bird life, and our acquaintance with the various forms that have existed is scanty in the extreme; but we may be sure that birds acquired wings, and feathers, and some power of flight, before they developed a keeled sternum, since we see that bats with no such keel fly very well. Since, therefore, the struthious birds all have perfect feathers, and all have rudimentary wings, which are anatomically those of true birds, not the rudimentary fore-legs of reptiles, and since we know that in many higher groups of birds—as the pigeons and the rails—the wings have become more or less aborted, and the keel of the sternum greatly reduced in size by disuse, it seems probable that the very remote ancestors of the rhea, the cassowary, and the apteryx, were true flying birds, although not perhaps provided with a keeled sternum, or possessing very great powers of flight. But in addition to the possible ancestral power of flight, we have the undoubted fact that the rhea and the emu both swim freely, the former having been seen swimming from island to island off the coast of Patagonia. This, taken in connection with the wonderful aquatic ostrich of the Cretaceous period discovered by Professor Marsh, opens up fresh possibilities of migration; while the immense antiquity thus given to the group and their universal distribution in past time, renders all suggestions of special modes of communication between the parts of the globe in which their scattered remnants now happen to exist, altogether superfluous and misleading.

The bearing of this argument on our present subject is, that so far as accounting for the presence of wingless birds in New Zealand is concerned, we have nothing whatever to do with any possible connection, by way of a southern continent or antarctic islands, with South America and South Africa, because the nearest allies of its moas and kiwis are the cassowaries and emus, and we have distinct indications of a former land extension towards North Australia and New Guinea, which is exactly what we require for the original entrance of the struthious type into the New Zealand area.

Winged Birds and Lower Vertebrates of New Zealand.—Having given a pretty full account of the New Zealand fauna elsewhere[176 - Geographical Distribution of Animals, Vol. I., p. 450.] I need only here point out its bearing on the hypothesis now advanced, of the former land-connection having been with North Australia, New Guinea, and the Western Pacific Islands, rather than with the temperate regions of Australia.

Of the Australian genera of birds, which are found also in New Zealand, almost every one ranges also into New Guinea or the Pacific Islands, while the few that do not extend beyond Australia are found in its northern districts. As regards the peculiar New Zealand genera, all whose affinities can be traced are allied to birds which belong to the tropical parts of the Australian region; while the starling family, to which four of the most remarkable New Zealand birds belong (the genera Creadion, Heterolocha, and Callæas), is totally wanting in temperate Australia and is comparatively scarce in the entire Australian region, but is abundant in the Oriental region, with which New Guinea and the Moluccas are in easy communication. It is certainly a most suggestive fact that there are more than sixty genera of birds peculiar to the Australian continent (with Tasmania), many of them almost or quite confined to its temperate portions, and that no single one of these should be represented in temperate New Zealand.[177 - In my Geographical Distribution of Animals (I. p. 541) I have given two peculiar Australian genera (Orthonyx and Tribonyx) as occurring in New Zealand. But the former has been found in New Guinea, while the New Zealand bird is considered to form a distinct genus, Clitonyx; and the latter inhabits Tasmania, and was recorded from New Zealand through an error. (See Ibis, 1873, p. 427.)] The affinities of the living and more highly organised, no less than those of the extinct and wingless birds, strikingly accord with the line of communication indicated by the deep submarine bank connecting these temperate islands with the tropical parts of the Australian region.

The reptiles, so far as they go, are quite in accordance with the birds. The lizards belong to two genera, Lygosoma, which has a wide range in all the tropics as well as in Australia; and Naultinus, a genus peculiar to New Zealand, but belonging to a family—Geckonidæ—spread over the whole of the warmer parts of the world. Australia, with New Guinea, on the other hand, has a peculiar family, and no less than twenty-one peculiar genera of lizards, many of which are confined to its temperate regions, but no one of them extends to temperate New Zealand.[178 - The peculiar genera of Australian lizards according to Boulenger's British Museum Catalogue, are as follows:—Family Geckonidæ: Nephrurus, Rhynchœdura, Heteronota, Diplodactylus, Œdura. Family Pygopodidæ (peculiar): Pygopus, Cryptodelma, Delma, Pletholax, Aprasia. Family Agamidæ: Chelosania, Amphibolurus, Tympanocryptis, Diporophora, Chlamydosaurus, Moloch, Oreodeira. Family Scincidæ: Egerina, Trachysaurus, Hemisphænodon. Family doubtful: Ophiopsiseps.] The extraordinary lizard-like Hatteria punctata of New Zealand forms of itself a distinct order of reptiles, in some respects intermediate between lizards and crocodiles, and having therefore no affinity with any living animal.

The only representative of the Amphibia in New Zealand is a solitary frog of a peculiar genus (Liopelma hochstetteri); but it has no affinity for any of the Australian frogs, which are numerous, and belong to eleven different families; while the Liopelma belongs to a very distinct family (Discoglossidæ), confined to the Palæarctic region.

Of the fresh-water fishes we need only say here, that none belong to peculiar Australian types, but are related to those of temperate South America or of Asia.

The Invertebrate classes are comparatively little known, and their modes of dispersal are so varied and exceptional that the facts presented by their distribution can add little weight to those already adduced. We will, therefore, now proceed to the conclusions which can fairly be drawn from the general facts of New Zealand natural history already known to us.

Deductions from the Peculiarities of the New Zealand Fauna.—The total absence (or extreme scarcity) of mammals in New Zealand obliges us to place its union with North Australia and New Guinea at a very remote epoch. We must either go back to a time when Australia itself had not yet received the ancestral forms of its present marsupials and monotremes, or we must suppose that the portion of Australia with which New Zealand was connected was then itself isolated from the mainland, and was thus without a mammalian population. We shall see in our next chapter that there are certain facts in the distribution of plants, no less than in the geological structure of the country, which favour the latter view. But we must on any supposition place the union very far back, to account for the total want of identity between the winged birds of New Zealand and those peculiar to Australia, and a similar want of accordance in the lizards, the fresh-water fishes, and the more important insect-groups of the two countries. From what we know of the long geological duration of the generic types of these groups we must certainly go back to the earlier portion of the Tertiary period at least, in order that there should be such a complete disseverance as exists between the characteristic animals of the two countries; and we must further suppose that, since their separation, there has been no subsequent union or sufficiently near approach to allow of any important intermigration, even of winged birds, between them. It seems probable, therefore, that the Bampton shoal west of New Caledonia, and Lord Howe's Island further south, formed the western limits of that extensive land in which the great wingless birds and other isolated members of the New Zealand fauna were developed. Whether this early land extended eastward to the Chatham Islands and southward to the Macquaries we have no means of ascertaining, but as the intervening sea appears to be not more than about 1,500 fathoms deep it is quite possible that such an amount of subsidence may have occurred. It is possible, too, that there may have been an extension northward to the Kermadec Islands, and even further to the Tonga and Fiji Islands, though this is hardly probable, or we should find more community between their productions and those of New Zealand.

A southern extension towards the Antarctic continent at a somewhat later period seems more probable, as affording an easy passage for the numerous species of South American and Antarctic plants, and also for the identical and closely allied fresh-water fishes of these countries.

The subsequent breaking up of this extensive land into a number of separate islands in which the distinct species of moa and kiwi were developed—their union at a later period, and the final submergence of all but the existing islands, is a pure hypothesis, which seems necessary to explain the occurrence of so many species of these birds in a small area but of which we have no independent proof. There are, however, some other facts which would be explained by it, as the presence of three peculiar but allied genera of starlings, the three species of parrots of the genus Nestor, and the six distinct rails of the genus Ocydromus, as well as the numerous species in some of the peculiar New Zealand genera of plants, which seem less likely to have been developed in a single area than when isolated, and thus preserved from the counteracting influence of intercrossing.

In the present state of our knowledge these seem all the conclusions we can arrive at from a study of the New Zealand fauna; but as we fortunately possess a tolerably full and accurate knowledge of the flora of New Zealand, as well as of that of Australia and the south temperate lands generally, it will be well to see how far these conclusions are supported by the facts of plant distribution, and what further indications they afford us of the early history of these most interesting countries. This inquiry is of sufficient importance to occupy a separate chapter.

CHAPTER XXII

THE FLORA OF NEW ZEALAND: ITS AFFINITIES AND PROBABLE ORIGIN

Relations of the New Zealand Flora to that of Australia—General Features of the Australian Flora—The Floras of South-eastern and South-western Australia—Geological Explanation of the Differences of these two Floras—The Origin of the Australian Element in the New Zealand Flora—Tropical Character of the New Zealand Flora Explained—Species Common to New Zealand and Australia mostly Temperate Forms—Why Easily Dispersed Plants have often Restricted Ranges—Summary and Conclusion on the New Zealand Flora.

Although plants have means of dispersal far exceeding those possessed by animals, yet as a matter of fact comparatively few species are carried for very great distances, and the flora of a country taken as a whole usually affords trustworthy indications of its past history. Plants, too, are more numerous in species than the higher animals, and are almost always better known; their affinities have been more systematically studied; and it may be safely affirmed that no explanation of the origin of the fauna of a country can be sound, which does not also explain, or at least harmonise with, the distribution and relations of its flora. The distribution of the two may be very different, but both should be explicable by the same series of geographical changes.

The relations of the flora of New Zealand to that of Australia have long formed an insoluble enigma for botanists. Sir Joseph Hooker, in his most instructive and masterly essay on the flora of Australia, says:—"Under whatever aspect I regard the flora of Australia and of New Zealand, I find all attempts to theorise on the possible causes of their community of feature frustrated by anomalies in distribution, such as I believe no two other similarly situated countries in the globe present. Everywhere else I recognise a parallelism or harmony in the main common features of contiguous floras, which conveys the impression of their generic affinity, at least, being affected by migration from centres of dispersion in one of them, or in some adjacent country. In this case it is widely different. Regarding the question from the Australian point of view, it is impossible in the present state of science to reconcile the fact of Acacia, Eucalyptus, Casuarina, Callitris, &c., being absent in New Zealand, with any theory of transoceanic migration that may be adopted to explain the presence of other Australian plants in New Zealand; and it is very difficult to conceive of a time or of conditions that could explain these anomalies, except by going back to epochs when the prevalent botanical as well as geographical features of each were widely different from what they are now. On the other hand, if I regard the question from the New Zealand point of view, I find such broad features of resemblance, and so many connecting links that afford irresistible evidence of a close botanical connection, that I cannot abandon the conviction that these great differences will present the least difficulties to whatever theory may explain the whole case." I will now state, as briefly as possible, what are the facts above referred to as being of so anomalous a character, and there is little difficulty in doing so, as we have them fully set forth, with admirable clearness, in the essay above alluded to, and in the same writer's Introduction to the Flora of New Zealand, only requiring some slight modifications, owing to the later discoveries which are given in the Handbook of the New Zealand Flora.

Confining ourselves always to flowering plants, we find that the flora of New Zealand is a very poor one, considering the extent of surface, and the favourable conditions of soil and climate. It consists of 1,085 species (our own islands possessing about 1,500), but a very large proportion of these are peculiar, there being no less than 800 endemic species, and thirty-two endemic genera.

Out of the 285 species not peculiar to New Zealand, no less than 215 are Australian, but a considerable number of these are also Antarctic, South American, or European; so that there are only about 100 species absolutely confined to New Zealand and Australia, and, what is important as indicating a somewhat recent immigration, only some half-dozen of these belong to genera which are peculiar to the two countries, and hardly any to the larger and more important Australian genera. Many, too, are rare species in both countries and are often alpines.

Far more important are the relations of the genera and families of the two countries. All the Natural Orders of New Zealand are found in Australia except three—Coriariæ, a widely-scattered group found in South Europe, the Himalayas, and the Andes; Escallonieæ, a widely distributed group; and Chloranthaceæ, found in Tropical Asia, Japan, Polynesia, and South America. Out of a total of 310 New Zealand genera, no less than 248 are Australian, and sixty of these are almost peculiar to the two countries, only thirty-two however being absolutely confined to them.[179 - These figures are taken from Mr. G. M. Thomson's address "On the Origin of the New Zealand Flora," Trans. N. Z. Institute, XIV. (1881), being the latest that I can obtain. They differ somewhat from those given in the first edition, but not so as to affect the conclusions drawn from them.] In the three large orders—Compositæ, Orchideæ, and Gramineæ, the genera are almost identical in the two countries, while the species—in the two former especially—are mostly distinct.

Here then we have apparently a wonderful resemblance between the New Zealand flora and that of Australia, indicated by more than two-thirds of the non-peculiar species, and more than nine-tenths of the non-peculiar genera (255) being Australian. But now let us look at the other side of the question.

There are in Australia seven great genera of plants, each containing more than 100 species, all widely spread over the country, and all highly characteristic Australian forms,—Acacia, Eucalyptus, Melaleuca, Leucopogon, Stylidium, Grevillea, and Hakea. These are entirely absent from New Zealand, except one species of Leucopogon, a genus which also has representatives in the Malayan and Pacific Islands. Sixteen more Australian genera have over fifty species each, and of these eight are totally absent from New Zealand, five are represented by one or two species, and only two are fairly represented; but these two—Drosera and Helichrysum—are very widespread genera, and might have reached New Zealand from other countries than Australia.

But this by no means exhausts the differences between New Zealand and Australia. No less than seven Australian Natural Orders—Dilleniaceæ, Buettneriaceæ, Polygaleæ, Tremandreæ, Casuarineæ, Hæmodoraceæ, and Xyrideæ are entirely wanting in New Zealand, and several others which are excessively abundant and highly characteristic of the former country are very poorly represented in the latter. Thus, Leguminosæ are extremely abundant in Australia, where there are over 1,000 species belonging to about 100 genera, many of them altogether peculiar to the country; yet in New Zealand this great order is most scantily represented, there being only five genera and thirteen species; and only two of these genera, Swainsonia and Clianthus, are Australian, and as the latter consists of but two species it may as well have passed from New Zealand to Australia as the other way, or more probably from some third country to them both.[180 - This accords with the general scarcity of Leguminosæ in Oceanic Islands, due probably to their usually dry and heavy seeds, not adapted to any of the forms of aërial transmission; and it would indicate either that New Zealand was never absolutely united with Australia, or that the union was at a very remote period when Leguminosæ were either not differentiated or comparatively rare.] Goodeniaceæ with ten genera and 220 species Australian, has but two species in New Zealand—and one of these is a salt-marsh plant found also in Tasmania and in Chile; and four other large Australian orders—Rhamneæ, Myoporineæ, Proteaceæ and Santalaceæ, have very few representatives in New Zealand.

We find, then, that the great fact we have to explain and account for is, the undoubted affinity of the New Zealand flora to that of Australia, but an affinity almost exclusively confined to the least predominant and least peculiar portion of that flora, leaving the most predominant, most characteristic, and most widely distributed portion absolutely unrepresented. We must however be careful not to exaggerate the amount of affinity with Australia, apparently implied by the fact that nearly six-sevenths of the New Zealand genera are also Australian, for, as we have already stated, a very large number of these are European, Antarctic, South American or Polynesian genera, whose presence in the two contiguous areas only indicates a common origin. About one-eighth, only, are absolutely confined to Australia and New Zealand (thirty-two genera), and even of these several are better represented in New Zealand than in Australia, and may therefore have passed from the former to the latter. No less than 174 of the New Zealand genera are temperate South American, many being also Antarctic or European; while others again are especially tropical or Polynesian; yet undoubtedly a larger proportion of the Natural Orders and genera are common to Australia than to any other country, so that we may say that the basis of the flora is Australian with a large intermixture of northern and southern temperate forms and others which have remote world-wide affinities.

General Features of the Australian Flora and its Probable Origin.—Before proceeding to point out how the peculiarities of the New Zealand flora may be best accounted for, it is necessary to consider briefly what are the main peculiarities of Australian vegetation, from which so important a part of that of New Zealand has evidently been derived.

The actual Australian flora consists of two great divisions—a temperate and a tropical, the temperate being again divisible into an eastern and a western portion. All that is most characteristic of the Australian flora belongs to the temperate division (though these often overspread the whole continent), in which are found almost all the remarkable Australian types of vegetation and the numerous genera peculiar to this part of the world. Contrary to what occurs in most other countries, the tropical appears to be less rich in species and genera than the temperate region, and what is still more remarkable it contains fewer peculiar species, and very few peculiar genera. Although the area of tropical Australia is about equal to that of the temperate portions, and it has now been pretty well explored botanically, it has probably not more than half as many species.[181 - Sir Joseph Hooker informs me that the number of tropical Australian plants discovered within the last twenty years is very great, and that the statement as above made may have to be modified. Looking, however, at the enormous disproportion of the figures given in the "Introductory Essay" in 1859 (2,200 tropical to 5,800 temperate species) it seems hardly possible that a great difference should not still exist, at all events as regards species. In Baron von Müeller's latest summary of the Australian Flora (Second Systematic Census of Australian Plants, 1889), he gives the total species at 8,839, of which 3,560 occur in West Australia, and 3,251 in New South Wales. On counting the species common to these two colonies in fifty pages of the Census taken at random, I find them to be about one-tenth of the total species in both. This would give the number of distinct species in these areas as about 6,130. Adding to these the species peculiar to Victoria and South Australia, we shall have a flora of near 6,500 in the temperate parts of Australia. It is true that West Australia extends far into the tropics, but an overwhelming majority of the species have been discovered in the south-western portion of the colony, while the species that may be exclusively tropical will be more than balanced by those of temperate Queensland, which have not been taken account of, as that colony is half temperate and half tropical. It thus appears probable that full three fourths of the species of Australian plants occur in the temperate regions, and are mainly characteristic of it. Sir Joseph Hooker also doubts the generally greater richness of tropical over temperate floras which I have taken as almost an axiom. He says: "Taking similar areas to Australia in the Western World, e.g., tropical Africa north of 20° S. Lat. as against temperate Africa and Europe up to 47°—I suspect that the latter would present more genera and species than the former." This, however, appears to me to be hardly a case in point, because Europe is a distinct continent from Africa and has had a very different past history, and it is not a fair comparison to take the tropical area in one continent while the temperate is made up of widely separated areas in two continents. A closer parallel may perhaps be found in equal areas of Brazil and south temperate America, or of Mexico and the Southern United States, in both of which cases I suppose there can be little doubt that the tropical areas are far the richest. Temperate South Africa is, no doubt, always quoted as richer than an equal area of tropical Africa or perhaps than any part of the world of equal extent, but this is admitted to be an exceptional case.] Nearly 500 of its species are identical with Indian or Malayan plants, or are very close representatives of them; while there are more than 200 Indian genera, confined for the most part to the tropical portion of Australia. The remainder of the tropical flora consists of a few species and many genera of temperate Australia which range over the whole continent, but these form only a small portion of the peculiarly Australian genera.

These remarkable facts clearly point to one conclusion—that the flora of tropical Australia is, comparatively, recent and derivative. If we imagine the greater part of North Australia to have been submerged beneath the ocean, from which it rose in the middle or latter part of the Tertiary period, offering an extensive area ready to be covered by such suitable forms of vegetation as could first reach it, something like the present condition of things would inevitably arise. From the north, widespread Indian and Malay plants would quickly enter, while from the south the most dominant forms of warm-temperate Australia, and such as were best adapted to the tropical climate and arid soil, would intermingle with them. Even if numerous islands had occupied the area of Northern Australia for long periods anterior to the final elevation, very much the same state of things would result.

The existence in North and North-east Australia of enormous areas covered with Cretaceous and other Secondary deposits, as well as extensive Tertiary formations, lends support to the view, that during very long epochs temperate Australia was cut off from all close connection with the tropical and northern lands by a wide extent of sea; and this isolation is exactly what was required, in order to bring about the wonderful amount of specialisation and the high development manifested by the typical Australian flora. Before proceeding further, however, let us examine this flora itself, so far as regards its component parts and probable past history.

The Floras of South-eastern and South-western Australia.—The peculiarities presented by the south-eastern and south-western subdivisions of the flora of temperate Australia are most interesting and suggestive, and are, perhaps, unparalleled in any other part of the world. South-west Australia is far less extensive than the south-eastern division—less varied in soil and climate, with no lofty mountains, and much sandy desert; yet, strange to say, it contains an equally rich flora and a far greater proportion of peculiar species and genera of plants. As Sir Joseph Hooker remarks:—"What differences there are in conditions would, judging from analogy with other countries, favour the idea that South-eastern Australia, from its far greater area, many large rivers, extensive tracts of mountainous country and humid forests, would present much the most extensive flora, of which only the drier types could extend into South-western Australia. But such is not the case; for though the far greater area is much the best explored, presents more varied conditions, and is tenanted by a larger number of Natural Orders and genera, these contain fewer species by several hundreds."[182 - Sir Joseph Hooker thinks that later discoveries in the Australian Alps and other parts of East and South Australia may have greatly modified or perhaps reversed the above estimate, and the figures given in the preceding note indicate that this is so. But still, the small area of South-west Australia will be, proportionally, far the richer of the two. It is much to be desired that the enormous mass of facts contained in Mr. Bentham's Flora Australiensis and Baron von Müeller's Census should be tabulated and compared by some competent botanist, so as to exhibit the various relations of its wonderful vegetation in the same manner as was done by Sir Joseph Hooker with the materials available twenty-one years ago.]

The fewer genera of South-western Australia are due almost wholly to the absence of the numerous European, Antarctic, and South-American types found in the south-eastern region, while in purely Australian types it is far the richer, for while it contains most of those found in the east it has a large number altogether peculiar to it; and Sir Joseph Hooker states that "there are about 180 genera, out of 600 in South-western Australia, that are either not found at all in South-eastern, or that are represented there by a very few species only, and these 180 genera include nearly 1,100 species."

Geological Explanation of the Differences of these Two Floras.—These facts again clearly point to the conclusion that South-western Australia is the remnant of the more extensive and more isolated portion of the continent in which the peculiar Australian flora was principally developed. The existence there of a very large area of granite—800 miles in length by nearly 500 in maximum width with detached masses 200 miles to the north and 500 miles to the east—indicates such an extension; for these granitic masses were certainly once buried under piles of stratified rock, since denuded, and then formed the nucleus of the old Western Australian continent. If we take the 1000-fathom line around the southern part of Australia to represent the probable extension of this old land we shall see that it would give a wide additional area south of the Great Australian Bight, and form a continent which, even if the greater part of tropical Australia were submerged, would be sufficient for the development of a peculiar and abundant flora. We must also remember that an elevation of 6000 feet, added to the vast amount which has been taken away by denudation, would change the whole country, including what are now the deserts of the interior, into a mountainous and well-watered region.

But while this rich and peculiar flora was in process of formation, the eastern portion of the continent must either have been widely separated from the western or had perhaps not yet risen from the ocean. The whole of this part of the country consists of Palæozoic and Secondary formations with granite and metamorphic rocks, the Secondary deposits being largely developed on both sides of the central range, extending the whole length of the continent from Tasmania to Cape York, and constituting the greater part of the plateau of the Blue Mountains and other lofty ranges. During some portion of the Secondary and Tertiary periods therefore, this side of Australia must have been almost wholly submerged beneath the ocean; and if we suppose that during this time the western part of the continent was at nearly its maximum extent and elevation, we shall have a sufficient explanation of the great difference between the flora of Western and Eastern Australia, since the latter would only have been able to receive immigrants from the former, at a later period, and in a more or less fragmentary manner.

If we examine the geological map of Australia (given in Stanford's Compendium of Geography and Travel, volume Australasia), we shall see good reason to conclude that the eastern and the western divisions of the country first existed as separate islands, and only became united at a comparatively recent epoch. This is indicated by an enormous stretch of Cretaceous and Tertiary formations extending from the Gulf of Carpentaria completely across the continent to the mouth of the Murray River. During the Cretaceous period, therefore, and probably throughout a considerable portion of the Tertiary epoch,[183 - From an examination of the fossil corals of the South-west of Victoria, Professor P. M. Duncan concludes—"that, at the time of the formation of these deposits the central area of Australia was occupied by sea, having open water to the north, with reefs in the neighbourhood of Java." The age of these fossils is not known, but as almost all are extinct species, and some are almost identical with European Pliocene and Miocene species, they are supposed to belong to a corresponding period. (Journal of Geol. Soc., 1870.)] there must have been a wide arm of the sea occupying this area, dividing the great mass of land on the west—the true seat and origin of the typical Australian flora—from a long but narrow belt of land on the east, indicated by the continuous mass of Secondary and Palæozoic formations already referred to which extend uninterruptedly from Tasmania to Cape York. Whether this formed one continuous land, or was broken up into islands, cannot be positively determined; but the fact that no marine Tertiary beds occur in the whole of this area, renders it probable that it was almost, if not quite, continuous, and that it not improbably extended across to what is now New Guinea. At this epoch, then (as shown in the accompanying map), Australia may, not improbably, have consisted of a very large and fertile western island, almost or quite extratropical, and extending from the Silurian rocks of the Flinders range in South Australia, to about 150 miles west of the present west coast, and southward to about 350 miles south of the Great Australian Bight. To the east of this, at a distance of from 250 to 400 miles, extended in a north and south direction a long but comparatively narrow island, stretching from far south of Tasmania to New Guinea; while the crystalline and Secondary formations of central North Australia probably indicate the existence of one or more large islands in that direction.

MAP SHOWING THE PROBABLE CONDITION OF AUSTRALIA DURING THE CRETACEOUS AND EARLY TERTIARY PERIODS.

The white portions represent land; the shaded parts sea.

The existing land of Australia is shown in outline.

The eastern and the western islands—with which we are now chiefly concerned—would then differ considerably in their vegetation and animal life. The western and more ancient land already possessed, in its main features, the peculiar Australian flora, and also the ancestral forms of its strange marsupial fauna, both of which it had probably received at some earlier epoch by a temporary union with the Asiatic continent over what is now the Java sea. Eastern Australia, on the other hand, possessed only the rudiments of its existing mixed flora, derived from three distinct sources. Some important fragments of the typical Australian vegetation had reached it across the marine strait, and had spread widely owing to the soil, climate and general conditions being exactly suited to it: from the north and north-east a tropical vegetation of Polynesian type had occupied suitable areas in the north; while the extension southward of the Tasmanian peninsula, accompanied, probably, as now, with lofty mountains, favoured the immigration of south-temperate forms from whatever Antarctic lands or islands then existed. This supposition is strikingly in harmony with what is known of the ancient flora of this portion of Australia. In deposits supposed to be of Eocene age in New South Wales and Victoria fossil plants have been found showing a very different vegetation from that now existing. Along with a few Australian types—such as Pittosporum, Knightia, and Eucalyptus, there occur birches, alders, oaks, and beeches; while in Tasmania in freshwater limestone, apparently of Miocene age, are found willows, alders, birches, oaks, and beeches,[184 - "On the Origin of the Fauna and Flora of New Zealand," by Captain F. W. Hutton, in Annals and Mag. of Nat. Hist. Fifth series, p. 427 (June, 1884).] all except the latter genus (Fagus) now quite extinct in Australia.[185 - To these must now be added the genera Sequoia, Myrica, Aralia, and Acer, described by Baron von Ettingshausen. (Trans. N.Z. Institute, xix., p. 449.)] These temperate forms probably indicate a more oceanic climate, cooler and moister than at present. The union with Western Australia and the establishment of an arid interior by modifying the climate may have led to the extinction of many of these forms and their replacement by special Australian types more suited to the new conditions.

At this time the marsupial fauna had not yet reached this eastern land, which was, however, occupied in the north by some ancestral struthious birds, which had entered it by way of New Guinea through some very ancient continental extension, and of which the emu, the cassowaries, the extinct Dromornis of Queensland, and the moas and kiwis of New Zealand, are the modified descendants.

The Origin of the Australian Element in the New Zealand Flora.—We have now brought down the history of Australia, as deduced from its geological structure and the main features of its existing and Tertiary flora, to the period when New Zealand was first brought into close connection with it, by means of a great north-western extension of that country, which, as already explained in our last chapter, is so clearly indicated by the form of the sea bottom (See Map, p. 471 (#x18_pgepubid00077)). The condition of New Zealand previous to this event is very obscure. That it had long existed as a more or less extensive land is indicated by its ancient sedimentary rocks; while the very small areas occupied by Jurassic and Cretaceous deposits, imply that much of the present land was then also above the sea-level. The country had probably at that time a scanty vegetation of mixed Antarctic and Polynesian origin; but now, for the first time, it would be open to the free immigration of such Australian types as were suitable to its climate, and which had already reached the tropical and sub-tropical portions of the Eastern Australian island. It is here that we obtain the clue to those strange anomalies and contradictions presented by the New Zealand flora in its relation to Australia, which have been so clearly set forth by Sir Joseph Hooker, and which have so puzzled botanists to account for. But these apparent anomalies cease to present any difficulty when we see that the Australian plants in New Zealand were acquired, not directly, but, as it were, at second hand, by union with an island which itself had as yet only received a portion of its existing flora. And then, further difficulties were placed in the way of New Zealand receiving such an adequate representation of that portion of the flora which had reached East Australia as its climate and position entitled it to, by the fact of the union being, not with the temperate, but with the tropical and sub-tropical portions of that island, so that only those groups could be acquired which were less exclusively temperate, and had already established themselves in the warmer portion of their new home[186 - The large collection of fossil plants from the Tertiary beds of New Zealand which have been recently described by Baron von Ettingshausen (Trans. N. Z. Inst., vol. xxiii., pp. 237-310), prove that a change in the vegetation has occurred similar to that which has taken place in Eastern Australia, and that the plants of the two countries once resembled each other more than they do now. We have, first, a series of groups now living in Australia, but which have become extinct in New Zealand, as Cassia, Dalbergia, Eucalyptus, Diospyros, Dryandra, Casuarina, and Ficus; and also such northern genera as Acer, Planera, Ulmus, Quercus, Alnus, Myrica, and Sequoia. All these latter, except Ulmus and Planera, have been found also in the Eastern-Australian Tertiaries, and we may therefore consider that at this period the northern temperate element in both floras was identical. If this flora entered both countries from the south, and was really Antarctic, its extinction in New Zealand may have been due to the submergence of the country to the south, and its elevation and extension towards the tropics, admitting of the incursion of the large number of Polynesian and tropical Australian types now found there; while the Australian portion of the same flora may have succumbed at a somewhat later period, when the elevation of the Cretaceous and Tertiary sea united it with Western Australia, and allowed the rich typical Australian flora to overrun the country. Of course we are assuming that the identification of these genera is for the most part correct, though almost entirely founded on leaves only. Fuller knowledge, both of the extinct flora itself and of the geological age of the several deposits, is requisite before any trustworthy explanation of the phenomena can be arrived at.].
<< 1 ... 27 28 29 30 31 32 33 34 35 ... 42 >>
На страницу:
31 из 42