Оценить:
 Рейтинг: 0

В поисках общей теории роста человечества

Год написания книги
2021
Теги
<< 1 2 3 4 5 6 7 8 ... 12 >>
На страницу:
4 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

Возможны два каузальных подхода при описании такого нелинейного роста.

1. В первом подходе причина роста ищется исключительно в связях между членами популяции, при этом полностью пренебрегается составляющей прироста без учета взаимодействий, т. е. индивидуальной способностью к размножению элементарной составляющей популяции, которая при отсутствии взаимодействий вызывает экспоненциальный рост. Так, в моделях роста численности населения Земли полагают, что мировой естественный прирост пропорционален квадрату полной численности населения Земли при любых значениях этой численности.

2. Во втором подходе прирост ищется в виде суммы двух составляющих, первая из которых отвечает за рост без взаимодействий. Вторая же составляющая естественного прироста, положительная или отрицательная, возникает по причине воздействия на него со стороны внутрипопуляционных связей.

Такой дополнительный положительный прирост за счет рождаемости, возникающий по причине взаимодействия между членами популяции, возможен лишь при том условии, что биотический потенциал системы полностью не исчерпан, т. е. если существует возможность увеличить приплод с особи за время ее жизни.

Другая часть такого дополнительного прироста возникает за счет изменения (положительного или отрицательного) уровня смертности. Оба эти воздействия так трансформируют, искажают естественный экспоненциальный рост, что превращают его, например, в рост логистический или даже в гиперболический.

Приведем примеры. Если рассматривать размножение колонии микроорганизмов в максимально благоприятных условиях, то никакие взаимодействия между этими организмами ускорить этот, уже и без того максимально быстрый экспоненциальный рост, очевидно, не могут, и рост будет экспоненциальным, таким же как и при отсутствии взаимодействий. Но могут его замедлить, если, например, среда обитания не безгранична и плотность популяции будет расти. Тогда закон роста будет нелинейным, например, логистическим.

Если же рассматривать рост численности населения Земли и исходить, к примеру, из модели Коротаева (где экспоненциальной составляющей прироста пренебрегается), то связи между членами социума, порождающие полезные инновации и способствующие их распространению на всю Мир-систему, преобразуют простую положительную обратную связь между естественным приростом и численностью в ПОС второго порядка, которая работает при любых численностях, во все времена и провозглашается единственной причиной гиперболического роста.

* * *

Второй подход представляется более логичным, т. к. величину связи между особями растущей популяции вряд ли можно считать неизменной на протяжении всего роста. Здесь разумно предположить, что зависимость эта будет тем сильнее, чем больше общая численность (плотность) популяции. Когда же эта численность невелика – рост должен быть экспоненциальным. Иначе говоря, если в нелинейном уравнении, описывающем рост популяции, численность устремить к нулю, оно должно превращаться в линейное уравнение Мальтуса.

Такой рост, подчиняющийся нелинейному закону, будет каузально более сложен, чем экспоненциальный рост, поскольку его причина заключена как в индивидуальной способности к размножению каждой элементарной репродуцирующей себя ячейки популяции, так и во взаимодействиях между ее членами. И такой нелинейный закон роста может быть назван причинным лишь в том случае, если он полностью определяется нелинейной обратной связью между численностью и естественным приростом.

В отличие от причинно-самодостаточного закона экспоненциального роста (dN/dt = aN) здесь уже недостаточно просто записать уравнение роста, нужно еще дать описание, объяснение тем нелинейным обратным связям, которые этот рост вызывают или на этот рост влияют. В этом сложность нелинейного роста и его каузального анализа.

Обычно, когда говорят о растущей изолированной популяции, то имеют в виду свободный рост, т. е. рост никем и никак не управляемый, не испытывающий никаких внешних воздействий и происходящий в естественных природных условиях. Причины свободного роста изолированной популяции заключены в двух процессах: процессе размножения каждой элементарной ячейки популяции и процессе взаимодействия между всеми этими ячейками.

Если же существуют какие-то факторы, целенаправленно воздействующие на рост, т. е. как-то его изменяющие, регулирующие, то такой рост следует считать управляемым. Примером управления ростом с помощью изменения его условий служит процесс выращивания микроорганизмов в питательной среде, где экспериментатор может менять температуру, состав питательной смеси и тем самым влиять на скорость деления микроорганизмов. Т. к. характерное время деления здесь мало, можно исследовать этот рост в широком диапазоне условий.

Другой пример – рост численности домашних животных. Здесь воздействие может варьироваться в широких пределах: от простой защиты от хищников и обеспечения кормом на пастбищах до постройки специально организованных ферм, где создаются все необходимые условия для роста и размножения. Вмешиваясь в ход природных процессов, человек может остановить исчезновение редких животных и восстановить их былую численность.

Все это примеры внешнего, не автономного воздействия на рост популяции. Но существует еще одна возможность: управление ростом изнутри, через связи, существующие между членами популяции. И здесь примером может служить рост человеческих сообществ. Можно целенаправленно с помощью специально созданных программ, без всякого оружия, только информацией – свести на нет, уничтожить целый народ.

И наоборот, используя разнообразные программы жизнесбережения, работающие изнутри, повысить естественный прирост целого этноса. В дальнейшем мы покажем, что если численность изолированной рассредоточенной популяции и скорость ее роста связаны нелинейно, то причиной такой связи может и не быть ПОС между приростом и численностью (N<—>?N/?t) или ООС между этими величинами, а закон, их связывающий, может и не быть законом причинным. Такой нелинейный закон роста популяции может описывать всего лишь функциональную, непричинную связь между ее численностью и естественным приростом. Т. е. представлять собой не более, чем регрессионную зависимость, не претендующую на какой-либо каузальный смысл.

* * *

Итак, рост популяции может быть как свободным, так и управляемым. Управляемый рост отличается от свободного наличием управляющей системы, стоящей над популяцией и способной изменять ее свободный рост в тех границах, которые определены биотическим потенциалом популяции и сопротивлением среды.

Например, превратить естественный экспоненциальный рост в рост гиперболический. Поскольку управляемый рост может быть осуществлен только достаточно сложной системой управления, как минимум обладающей памятью, то момент детерминации может быть расположен здесь позднее во времени того момента, когда происходит детерминированное событие.

Понимать это надо так: управляющая система непрерывно контролирует текущую численность популяции и воздействует на внутрипопуляционные связи таким образом, чтобы сделать максимально вероятной последовательность ранжированных событий, каждое из которых заключается в достижении численности популяции в определенный момент времени в будущем некоторого предустановленного значения.

Задача каузального анализа в таком случае заключается в том, чтобы найти целевой, телеологический каузальный закон, управляющий ростом, и механизм его реализации.

Модель степенного роста, или рассказ о том, как не растут популяции

Закон степенного роста (убывания) какой-либо величины во времени – это зависимость вида y = C(t – t

)

, где показатель n не равен нулю или единице и может быть положительным, отрицательным, целым или дробным.

Может ли численность роста какой-либо популяции на каком-то этапе своего роста описываться степенным законом? Это возможно лишь при том условии, что на этом этапе прирост численности за небольшой промежуток времени будет пропорционален некоторой степени численности, причем показатель этой степени не должен быть равен единице.

В таком случае вопрос можно сформулировать так: может ли скорость роста численности популяции выражаться в виде степенного закона (3) рис. 1?

Рис. 1. Степенной и экспоненциальный законы роста численности популяции.

При разных значениях параметра m закон (3) описывает параболический, экспоненциальный и гиперболический рост. Возьмем для определенности значения m = 0, 1, 2, которые соответствует трем наиболее часто встречающимся в природе законам: линейному, экспоненциальному и гиперболическому.

Из них только закон экспоненциального роста имеет встроенный масштаб времени или характерное время удвоения численности популяции, что ясно уже из соображений размерности, т. к. показатель экспоненты представлен в виде произведения константы ?, умноженной на время t.

Следовательно, величина обратная ?, определяющая этот встроенный масштаб времени, должна иметь размерность времени, поскольку в показателе экспоненты может стоять только безразмерная величина.

Термин «встроенный масштаб времени», возможно, является не совсем удачным, поскольку закон экспоненциального роста не содержит в себе какого-то единственного масштаба, в котором можно измерять время протекания процесса. А содержит постоянную времени через которую этот масштаб: время удвоения численности, какое-то другое характерное время, может быть выражен.

Природа экспоненциального роста такова, что если взять произвольную точку на оси времени и откладывать от нее интервалы произвольной, но равной длительности, то численность популяции на последовательности этих интервалов будет расти по закону геометрической прогрессии.

Что в корне отличает его от степенного параболического или гиперболического роста. Для которых не существует встроенного масштаба времени – неизменного времени удвоения численности, т. к. для них это время либо возрастает, либо убывает.

И которые в силу этой своей особенности не могут описывать рост какой-либо популяции, при том условии, конечно, что рост этот определяется причинным законом, т. е. порождается нелинейной положительной обратной связью (НПОС) между численностью и ее естественным приростом. НПОС, причины которой полностью определяются связями (и только связями, а не индивидуальной способностью к размножению) между членами популяции и которая может быть понята? и описана.

* * *

В самой природе степенного роста популяции есть что-то неестественное: трудно себе представить, чтобы прирост численности был пропорционален не самой численности, а какой-то ее степени. При экспоненциальном росте прирост численности популяции пропорционален самой численности. Если удвоить численность, то за этот же промежуток времени удвоится и ее прирост.

Но если прирост зависит от численности по степенному закону – это не так. В таком случае можно попробовать постулировать зависимость коэффициента прироста численности от численности по степенному закону. Открытие закона гиперболического роста населения Земли описывает Л.М. Гиндилис:

«Довольно очевидно, что абсолютный прирост населения должен быть пропорционален численности населения. Если взять какой-то однородный в демографическом отношении регион, то из двух пунктов этого региона, прирост будет выше там, где больше численность населения. Точно так же, чем больше численность населения в момент времени t, тем больше и прирост населения в этот момент. Статистика показывает, что за небольшое время dt, прирост будет равен dN = ?Ndt. «…»

«В 1960 году в журнале «Science» была опубликована статья трех авторов Х. Фостера, П. Мориа и Л. Эмиота, которая называлась «День страшного суда пятница 13 ноября 2026 года». Используя тщательно отобранные статистические данные авторы показали, что относительный прирост населения растет так же быстро, как само население. Чем объясняется такая зависимость, остается пока неясным». «…»

Рис. 2. Пропорциональность коэффициента мирового естественного прироста общей численности народонаселения позволяет объяснить гиперболический рост населения Земли.

«…Сокращение смертности в целом по земному шару перекрывает уменьшение рождаемости в отдельных (особенно развитых странах), так что естественный прирост на Земле возрастает со временем. Менее ясно почему он растет столь же стремительно как само население, что собственно и приводит к гиперболическому закону. Это пока остается загадкой» [22], стр. 471.

Здесь Л.М. Гиндилис допускает две серьезные ошибки. Первая заключается в том, что, отождествляя закон гиперболического роста численности населения мира с причинным степенным законом квадратичного роста (который утверждает, что причина гиперболического роста заключается в ПОС второго порядка между скоростью роста и численностью), он приписывает Фёрстеру открытие, которого тот не совершал.

Исследование Фёрстера и его коллег касается только зависимости численности от времени, которая была получена при обработке большого количества данных по методу наименьших квадратов. Как в точности, если не говорить о средних величинах, зависела при этом скорость роста численности от численности и от времени, и как зависел коэффициент прироста от численности – остается неизвестным.

На самом деле эмпирическая зависимость численности от времени, открытая Фёрстером и его коллегами, могла быть получена и при другом, отличном от закона квадратичного роста, дифференциальном причинном законе роста. Неясно даже может ли вообще гиперболический рост населения мира, учитывая непонятную, парадоксальную системность человечества, без которой он никогда бы не проявился, быть объяснен с помощью законов с простой преддетерминацией. Связь между скоростью роста и численностью в таком случае в период гиперболического роста могла и не быть причинно-следственной.

Вторая ошибка вполне логична и заключается в том, что автор подменяет здесь проблему гиперболического роста численности населения Земли на проблему линейной зависимости коэффициента мирового естественного прироста от численности.

Если коэффициент естественного прироста для каждого села, города, страны, региона – един и пропорционален численности населения мира: ? = ?

N, то сложив эти приросты (dN

= ?

N*N
<< 1 2 3 4 5 6 7 8 ... 12 >>
На страницу:
4 из 12