Оценить:
 Рейтинг: 0

В поисках общей теории роста человечества

Год написания книги
2021
Теги
<< 1 2 3 4 5 6 7 8 9 10 ... 12 >>
На страницу:
6 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

Если исходить из предположения о том, что гиперболический рост численности человечества был обусловлен причинным законом с простой преддетерминацией, то в уравнении роста должен присутствовать и линейный член: dN/dt = ?N + ?N

, что будет обосновано нами чуть позже. Если же такого члена нет и рост изначально предполагается гиперболическим, то мы неизбежно приходим к тем противоречиям, о которых говорили ранее.

Первые гоминиды мало отличались от своих собратьев человекообразных обезьян, живших с ними в одно и то же время и умножавших свою численность по закону Мальтуса. Поэтому логично предположить, что рост численности первых популяций рода Homo был экспоненциальным, хотя и чрезвычайно медленным.

С.П. Капица считает, что рост численности гоминид на первом этапе продолжительностью 2.8 млн лет был линейным. Во что поверить совершенно невозможно, поскольку в таком случае суммарный прирост численности популяций гоминид, предков современного человека, на протяжении 2.8 млн лет предполагается постоянным, не зависящим от их растущей численности.

А на втором этапе длительностью 1.6 млн лет он полагает, что этот рост был уже чисто гиперболическим. Почему С.П. Капица не включает линейный член в свое уравнение? Дело здесь не только в том, что в этом случае может быть нарушено соответствие с демографическими данными, указывающими на гиперболический рост.

Причина в том, что если допустить присутствие такого пусть даже и «сколь угодно малого» члена в уравнении роста, то сразу же придется распрощаться с бессмысленным самоподобием роста, его масштабной инвариантностью, а также с автомодельностью развития – понятиями характерными для физических процессов, которые описываются простыми масштабно-инвариантными законами.

Действительно, решения уравнения dN/dt = ?N + ?N

, в отличие от решений уравнения dN/dt = ?N

, имеют встроенный масштаб времени[96 - Так же как решения логистического уравнения, которое отличается только знаком второго члена.].

Тут может быть такое возражение: если членом ?N на завершающих этапах роста можно пренебречь, то для этих этапов закон роста можно считать степенным со всеми необходимыми для физикалистской интерпретации гиперболического роста следствиями.

Ответ здесь такой: учитывая, что Мир-система ни в какие времена не была единым информационном полем, а информационная связность человечества на протяжении всей человеческой истории всегда только возрастала, квадратичный член ?N

мог начать оказывать существенное влияние лишь на завершающих этапах роста, т. е. в течение последних двух-трех столетий. (На самом деле, и мы впоследствии это покажем, линейным членом нельзя пренебречь ни на каком этапе роста.)

Кроме того, не следует забывать о циклах эволюции и истории, которые вводятся в рассмотрение С.П. Капицей. Все время эволюции, начиная от момента ?1.6 млн лет, делится им на одиннадцать периодов равной (в логарифмическом масштабе) длительности с неолитом посередине.

В течение каждого такого периода, длительность которого в три раза меньше предыдущего, численность также возрастала в три раза. Но такая цикличность возможна лишь при степенном, гиперболическом росте; и если на последних циклах линейным членом может быть и можно как-то пренебречь, то рост до неолита, да и в первые несколько тысячелетий после начала неолита, когда человечество не представляло собой системы ни в каком смысле слова, сделать это, очевидно, нельзя, и рост здесь, если исходить из представления о законе роста как о ПОС между численностью и приростом, должен быть экспоненциальным.

В таком случае ни о какой цикличности роста и демографическом императиве до начала новой эры говорить не приходится. Поэтому уравнение роста с дополнительным линейным членом в правой части С.П. Капице и не подходит, поскольку находится в противоречии с принципом демографического императива и цикличностью исторического развития.

* * *

Обоснование этой цикличности – вот та проблема, которая всегда волновала С.П. Капицу. Границы циклов в первом приближении были размечены еще до него историком И.М. Дьяконовым; проблема здесь в том, почему циклов примерно 10–15 и почему они расположены на шкале исторического времени так, как расположены. В чем глубинная природа цикличности?

Показатель сжатия исторического времени (знаменатель прогрессии сжимающихся исторических циклов) С.П. Капица принимает сначала равным числу Эйлера. Его значение е = 2.718… он почему-то считает наиболее подходящей естественной мерой такого сжатия, хотя число Эйлера – основание натуральных логарифмов – в чистом виде никогда не встречается ни в одном законе естествознания.

Потом он «округляет» его до трех, хотя средний коэффициент ускорения развития мировых цивилизаций согласно, например, исследованиям академика Ю.В. Яковца равен примерно двум. Свою постоянную времени ? = 42–45 лет С.П. Капица не связывает ни с каким глобальным циклическим историческим процессом, хотя она примерно равна продолжительности, вероятно, самого главного экономического и исторического цикла – Кондратьевского цикла.

Последний цикл его периодизации по длительности также примерно равен ?, а длительность всех остальных выражается целым числом ?. Эту константу он называет временем, «…определяемым внутренней предельной способностью системы человечества и человека к развитию». Что это означает – не понимает никто.

Безразмерную константу K (Kapitsa), которая вводится вместе с ?, он определяет как главное число своей теории и в одних своих работах называет эффективным размером группы людей, а в других – аналогом числа Рейнольдса в гидродинамике. Что означают константы ? и K на самом деле – совершенно непонятно.

В девяностые годы прошлого века, когда его «феноменология» еще окончательно не закостенела и казалось, что вот-вот, еще чуть-чуть и все станет ясно, он надеялся, что каким-то чудесным образом, возможно, чисто математически – расширением области определения переменных, либо каким-то иным путем эту загадочную цикличность удастся все-таки обосновать:

«Отмеченную цикличность можно связать с тем, что Рв = К

lnt периодична в комплексной области, или же тем, что мы имеем дело с бифуркациями в более полной системе уравнений, описывающей рост» [1].

Но время шло, а проблема так и оставалась нерешенной. Спустя годы, все, что может предложить автор «Парадоксов роста» – это лишь поверхностную, механистическую аналогию:

«Хорошо известно, что умело закрученный плоский камень, брошенный под малым углом к поверхности пруда способен многократно отскакивать от воды, совершая прыжки на большое расстояние. В этом явлении мы видим, как быстрое вращение камня стабилизирует его в пространстве, несмотря на удары о поверхность воды. С другой стороны, мы видим, как в этих условиях преобразуется движение камня по инерции и образуется устойчивая периодическая серия укорачивающихся скачков, пока движение не затухнет и камень не утонет.

В этой механической модели можно усмотреть поучительные аналогии с предложенной моделью развития населения Земли, когда внутренние процессы приводят к возникновению периодических циклов, которые определяют развитие и устойчивость этого процесса. Поэтому подобные примеры, взятые из механики, помогают понять развитие такой сложной системы, как человечество, в результате которого население Земли в среднем устойчиво следует по статистически детерминированному пути автомодельного, самоподобного роста, управляемого внутренней динамикой роста, сцепленного с развитием благодаря разуму» [9].

Не находит объяснения эта цикличность и в последней попытке построить модель роста численности населения Земли с учетом пространственного распределения (авторы: Е.Н. Князева, В.А. Белавин, Е.С. Куркина)[97 - http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf (http://www.avmol51.narod.ru/Kapitsa/knjazeva_belavin_kurkina.pdf)]. Рост численности человечества с учетом пространственного распределения безо всякого обоснования и каких-либо объяснений описывается ими с помощью уравнения диффузии или горения, которое, по их мнению, может описывать и мировой демографический процесс.

* * *

Во всех работах С.П. Капицы по теоретической демографии можно найти графики линейного, экспоненциального и гиперболического роста как возможные варианты роста численности человечества:

Рис. 3. Графики линейного, экспоненциального и гиперболического роста в работах С.П. Капицы.

Уравнения роста как причинные законы здесь схожи, но только при гиперболическом росте численность популяции устремляется к бесконечности за конечный промежуток времени, что приводит, по его мнению, к режиму с обострением, выход из которого С.П. Капица, используя терминологию термодинамики, называет фазовым переходом. В этом, считает С.П. Капица, и состоит главный секрет гиперболического роста со всеми необходимыми для его «феноменологии» физикалистскими следствиями.

Представляется совершенно недопустимым ставить в один ряд столь разные для экологии популяций законы роста, один из которых распространен повсеместно, тогда как другие два как причинные законы роста популяций – НИКОГДА не встречаются в природе.

Линейный закон, как мы уже отмечали ранее, дает постоянный, не зависящий от растущей численности прирост, что выглядит как полная несообразность. Гиперболический рост населения Земли, происходящий по причине ПОС второго порядка между численностью и мировым естественным приростом также невозможен, т. к. предполагает для рассредоточенной популяции Homo sapiens системность, которой она никогда не обладала и еще по множеству других причин, о которых мы будем говорить далее.

Экология популяций – это не физика, у нее свои законы и главный из них – закон экспоненциального роста, который, по мнению физика (!), лауреата нобелевской премии В.Л. Гинсбурга, является первым и важнейшим законом (или даже принципом) экологии популяций.

И который утверждает, что естественное состояние популяции – это рост или уменьшение по экспоненте. Это столь же важный закон для экологии популяций, как первый закон Ньютона для физики. Ни одна популяция, принадлежащая какому-либо виду из всех когда-либо существовавших в природе, не росла в соответствии со степенным законом, каузально связывающим скорость роста с численностью.

Причина здесь в особенностях нелинейного степенного роста, которые не соответствуют никакому природному репродуктивному процессу. Следовательно, причинная модель степенного роста неприменима для описания динамики изменения численности популяций.

И если численность какой-либо популяции, как, например, численность человечества растет все-таки по степенному закону, то такое возможно лишь потому, что закон, связывающий скорость роста с численностью, причинным законом в этом случае не является.

Главный закон роста численности изолированной популяции

В основе любых моделей лежат некоторые предположения. Ценность модели определяется тем, насколько ее характеристики соответствуют свойствам моделируемого объекта. Одним из самых фундаментальных предположений, лежащим в основе всех моделей роста, является предположение о пропорциональности скорости роста численности популяции – самой этой численности, будь то популяция зайцев, будь то популяция клеток.

В основе этого предположения лежит тот общеизвестный факт, что важнейшей характеристикой живых систем является их способность к размножению. Для многих одноклеточных организмов или клеток, входящих в состав клеточных тканей – это просто деление, то есть удвоение числа клеток через определенный интервал времени, называемый характерным временем деления.

Для сложно организованных растений и животных размножение происходит по более сложному закону, но в наиболее простых и адекватных моделях предполагается, что скорость размножения популяции пропорциональна численности этой популяции. Закон экспоненциального роста справедлив на определенной стадии для следующих живых систем: клеток в ткани, водорослей, бактерий в культуре, животных в популяциях.

Математическое выражение, описывающее увеличение скорости изменения величины с ростом самой этой величины, называют автокаталитическим членом (авто – само, катализ – изменение скорости реакции). Во многих популярных руководствах по экологии говорится, что экспоненциальный рост популяций возможен только в особо оптимальных условиях при отсутствии каких-либо ограничивающих факторов.

Это не совсем верно, поскольку единственное необходимое и достаточное условие такого роста – это постоянство коэффициента естественного прироста, определяющего для размножающихся организмов скорость их размножения.

Так, например, проводя серию наблюдений за ростом популяции каких-либо одноклеточных организмов в разных температурных условиях, нетрудно заметить, что с уменьшением температуры скорость деления клеток падает, но экспоненциальный характер роста сохраняется [13].

Иногда желая принизить значение экспоненциального роста популяции, авторы акцентируют внимание на его непродолжительности, на то, что он почти никогда не встречается в природе и, следовательно, может рассматриваться, по их мнению, лишь как демонстрация потенциальной возможности популяции к росту.

При этом они забывают о том, что никакая популяция так бы никогда и не появилась в природе, если бы не существовал этот важный, пусть и кратковременный, этап ее развития. Но бывают случаи, когда этот этап все длится и длится и никак не может закончиться:

«В 1859 году один фермер завез в южную часть Австралийского континента дюжину кроликов из Европы. В Австралии для них не оказалось видов-контролеров (хищников или паразитов) и численность кроликов стала расти в соответствии с экспоненциальной кривой. В итоге за 6 лет их количество достигло 22 миллионов.

К 1930 году они расселились по всему континенту, а численность их достигла 750 млн! Кролики конкурировали с овцами за корм (в итоге поголовье овец снизилось в два раза). Они лишали корма кенгуру. В начале 1950 годов удалось уничтожить 90 % кроликов, заразив их патогенным вирусом миксомы (родственником вируса оспы). Однако на этом «кроличья эпопея» в Австралии не завершилась: достаточно быстро произошел процесс формирования экотипа устойчивого к болезни, и поголовье снова начало расти» [14].

В природе, прошедшей длительный путь эволюции, мы наблюдаем самые разнообразные способы ограничения экспоненциальной экспансии размножающихся организмов. Важное значение имеют внешние воздействия на популяцию: неблагоприятные условия, конкуренты, хищники, паразиты, возбудители болезней и т. п. Но для изолированных популяций интерес представляют только те изменения, которые возникают внутри самих популяций, происходящие в ответ на рост их численности.
<< 1 2 3 4 5 6 7 8 9 10 ... 12 >>
На страницу:
6 из 12