Оценить:
 Рейтинг: 0

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков

Год написания книги
2024
Теги
<< 1 2 3 4 5 6 ... 12 >>
На страницу:
2 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

Однако рассматриваемый способ не всегда может быть реализован. Большое значение имеют рационально организованные камеральные упражнения по дешифрированию аэроснимков и других информационных моделей. Для этих целей необходима разработка системы наглядных пособий, включающих аннотированные изображения, называемые как «эталоны», «портреты». В настоящее время «эталоны» достаточно широко применяются в области автоматизированного дешифрирования аэроснимков.

Проблема построения и использования эталонов весьма сложна, в том числе и в психологическом отношении. Процесс аэрофотографического эталонирования включает: изучение типовых (ключевых) участков местности; анализ их аэрофотоизображений; отбор и проверку эталонных изображений типовых объектов и их классификацию. Для фиксации информации, механизации процесса поиска эталонов применяются классификаторы и системы кодирования.

По содержанию эталоны разделены на специальные (эталоны однородных компонентов ландшафта) и комплексные (эталоны типов ландшафта и их морфологических элементов); по форме – на простые (эталоны отдельных контуров) и сложные (эталоны сочетания контуров); по дальности экстраполяции – на локальные, региональные и зональные и т. д.

Аэрофотографические эталоны делятся на:

селективные – основанные на подборе аналогичных фотоизображений;

элиминативные – основанные на сопоставлении совокупностей фотоизображений и исключении непохожих (дисковые и дихотомические).

Основной задачей дешифрирования является повышение дешифровочных характеристик полученных изображений путем применения к ним программных инструментов для обработки изображений и включает в себя выполнение следующих задач:

– управление видимостью изображений в интерфейсе программного комплекса, включая фильтрацию списка загруженных изображений по различным критериям и настройку прозрачности изображений;

– фильтрация шумов различной природы на изображениях;

– обрезка (кадрирование) изображений;

– уточнение навигационных данных для изображений на основе модели датчика и данных пилотажно-навигационного комплекса;

– корректировка координатной привязки изображений по опорным точкам на местности с использованием опорной геопространственной информации.

Задачей детального дешифрирования являются обнаружение и классификация объектов на полученных изображениях и сохранение объектов в базе данных (БД). Детальное дешифрирование изображений, прошедших этап обзорного дешифрирования, включает в себя выполнение следующих задач:

– автоматизированное обнаружение и классификация на изображениях объектов, для которых в базе данных имеются эталонные вектора признаков;

– визуальное обнаружение и классификация объектов;

– сохранение результатов дешифрирования в БД.

При выполнении задачи визуального обнаружения объектов предоставляется визуальная поддержка дешифрирования для классов объектов, по которым в БД присутствует эталонная информация. По результатам детального дешифрирования формируется донесение.

Традиционные подходы при разработке алгоритмов классификации сводятся к выбору формального описания объектов, построению БД с наиболее характерными описаниями (эталонными векторами признаков) для каждого класса и дальнейшим сопоставлением векторов признаков объектов с БД эталонов, представляющих портрет объекта в различном диапазоне длин волн: оптическом, радиолокационном. Формирование БД портретов (эталонов) объектов является самой трудоемкой частью такого подхода и требует экспертных знаний по разработке системы распознавания.

Одним из наиболее активно развивающихся подходов в области распознавания в последнее время является применение нейронных сетей, в частности различных моделей нейронных сетей. По сравнению с традиционными подходами для нейронных сетей не требуется экспертное построение формальных описаний объектов – используются непосредственно изображения объектов, и для распознавания не нужна БД эталонных векторов признаков – знание о классах находится непосредственно в параметрах обученной нейронных сетей. Кроме этого, нейронные сети достаточно устойчивы к зашумлению обрабатываемых изображений. Для обучения нейронных сетей требуется значительный набор изображений объектов каждого класса.

Одной из основных задач применения классификаторов, основанных на нейросетевых методах, является создание обучающего набора данных достаточного объема, который может составлять десятки тысяч объектов, разбитых на классы.

Классификатор в части накопления и систематизации данных должен обеспечивать:

– формирование обучающего набора данных для классификации по условиям съемки, типам и количества выбранных классов объектов;

– обобщение и анализ обработанной информации сведением базы данных типовых объектов;

– хранение в БД цифровой картографической и опорной геопространственной информации на зону ответственности, радиолокационных и оптико-электронных изображений, формализованных и неформализованных донесений.

Должна обеспечиваться возможность выполнения поиска объектов в БД по различным критериям и возможность обучения пользователей путем формирования учебной обстановки и сохранения результатов контрольно-тестовых полетов. Программные комплексы должны иметь тренажный режим, который поддерживают все функции, применяемые в штатном режиме работы.

Как показывают эксперименты, и занятия по полевому дешифрированию, а также упражнения со специальными макетами, заменяющими реальные объекты, вполне обеспечивают переход от восприятия необычных изображений к объектам в натуре и резко повышают эффективность камерального дешифрирования. Так, в одном из экспериментов специально организованное кратковременное полевое обучение повысило результаты последующего камерального дешифрирования топографических объектов у обучаемых не менее чем на 20 % по сравнению с контрольной группой, не имеющей полевой практики. В качестве специальной задачи по развитию способностей структурного анализа можно производить дешифрирование аэроснимков, на которых постепенно закрывать 30, 50 или 70 % простых объектов, оставляя косвенные и комплексные признаки, способствующие распознаванию сложного объекта, выявлению его состояния и характера деятельности. В заключение определенного курса тренировок целесообразно проводить соревнования между специалистами по решению зачетных задач.

Рациональное использование различных эталонных снимков в процессе обучения требует большого мастерства от преподавателя. Так, например, для формирования гибких «дешифровочных» образов весьма важна вариация снимков на один и тот же объект.

В этих же целях полезно проведение упражнений на мысленное «восстановление» различных проекций объектов на основе планового изображения. Для формирования «чувства масштаба», «масштабных» эталонных образов необходимо использование «шкаловых» масштабных пособий.

Методика обучения дешифрированию в процессе использования эталонов и других учебных пособий должна предусматривать специальное развитие у обучаемых приемов дифференцированного структурного и индикационного анализа с использованием различных признаков в зависимости от поставленной задачи, требующей различной степени категоричности извлекаемой информации, формирование эталонных программ распознавания на основе применения «алгоритмических предписаний».

В целях интенсификации и ускорения подготовки операторов-дешифровщиков перспективным является использование способов и средств программированного (управляемого) обучения.

Программированное обучение представляет собой строго организованный и управляемый процесс формирования у обучаемых понятий, представлений, навыков в соответствии с заранее созданной оптимальной моделью этого процесса.

Управление процессом обучения может быть достигнуто путем программирования на всех этапах обучения и повышения контроля обучаемых. Проведенные психолого-педагогические исследования свидетельствуют о большой роли при программировании учебного процесса структурных логических схем, обеспечивающих определение необходимого объема учебного материала, деление этого материала на смысловые дозы информации и рациональную последовательность их изучения, и логико-психологических схем методики обучения. Основу последних составляет психологическая структура знаний, умений и навыков, исходя из специфики учебного материала. Логико-психологические схемы позволяют устанавливать правильное соотношение между используемыми формами, средствами и методами обучения.

При обучении дешифрированию эффективно использование технических средств обучения, обеспечивающих коллективное предъявление визуальной информации (негативной и позитивной) в виде аэрофильмов или видеофильмов, а также программные комплексы тренажеров.

Несомненно, центральной методической задачей в области дешифрирования является специальное обучение дешифровщиков и других специалистов, применяющих аэрометоды, смысловому анализу и оценке содержания информационных моделей. При этом должен быть реализован ландшафтный принцип, заключающийся в комплексном изучении всех элементов обстановки в их взаимосвязях.

Для решения этой задачи методика подготовки должна предусматривать:

специальное обучение учащихся корреляционным зависимостям между элементами природной обстановки;

прочное усвоение системы комплексных и косвенных признаков; активное применение дешифровочных знаний на разных этапах решения перцептивных, диагностических и поисковых задач;

специальное обучение наиболее прогрессивным способам структурно-поискового анализа информационной модели; достаточную практику в выполнении графо-расчетных дешифровочных операций и т. д.

Как было показано выше, реализация подобной методики при обучении операторов-дешифровщиков дает большой эффект.

Для обучения анализу содержания информационных моделей полезно создание и использование сюжетных задач по дешифрированию элементов природной обстановки. Для создания сюжетных задач могут быть использованы комплексные эталоны и специально подобранные аэроснимки с характерными природными условиями. Для активизации перцептивной и мысленной деятельности обучаемых в качестве специального метода полезно создание дешифровочной обстановки с постановкой «активизирующих» вопросов. При этом важным методическим приемом является требование от обучаемых доказательств своих решений.

1.2. Порядок выполнения дешифрирования

В совокупности приемы, пути и способы организации и выполнения дешифрирования должны быть направлены на эффективное использование сил и средств подразделения дешифрирования с целью решение двух важных задач: получение информации высокого качества в минимально короткие сроки и максимальное использование информации изображений.

В зависимости от поставленной задачи, возможностей подразделения и отведенного времени дешифрирование может выполняться один раз с выдачей первоочередной или сразу полной и подробной информации, а также в два и даже в три этапа с постепенным увеличением ее полноты и подробности.

Порядок выполнения дешифрирования состоит из следующих этапов:

1) изучение условий получения изображений и подготовка материалов к дешифрированию;

2) поиск сложных объектов и определение их элементов, привязка к топографической карте и ориентирование объектов;

3) определение координат объектов;

4) распознавание простых объектов, оценка и обобщение его результатов;

5) определение состояния объектов и их количественных характеристик;

6) оформление результатов дешифрирования.
<< 1 2 3 4 5 6 ... 12 >>
На страницу:
2 из 12