Возможно, что дрейфовые движения и небольшие скачки, прерывающие дрейф, также подчиняются принципам, лежащим в основе работы следящей системы. Можно предположить, что неупорядоченный характер дрейфа обусловлен, с одной стороны, случайными изменениями оптической и кинестетической стимуляций, а с другой – не столь случайными флуктуациями чувствительности зрительной системы.
Таким образом, во всех основных проявлениях на исходном уровне глазодвигательная система работает по принципам следящей.
Характеристики элементарных движений глаз определяются прежде всего зрительной стимуляцией. Именно они (в цепи как прямой, так и обратной связи) регулируют систему по положению. Кинестезия, по-видимому, выполняет функции регулирования по скорости, а также торможения.
Следящая система, управляющая движениями глаз, может быть описана в терминах теории автоматического регулирования.
Предложенная модель относится к исходному (первому) уровню регулирования. На более высоких уровнях движения глаз управляются программой, которая обеспечивает упорядоченность элементарных движений в пространстве и времени (прежде всего маршрут осмотра объектов). Программа определяется задачей, решаемой человеком.
В целом механизм, регулирующий движения глаз, представляет собой, по-видимому, многоуровневую, иерархически построенную систему с переменной структурой и большими возможностями переключений. В каждом конкретном случае задача, решаемая человеком, выступает в роли того системообразующего фактора [14], который определяет структуру и динамику управляющего механизма в данных условиях.
Взаимодействие рук в процессе ощупывания
Общая характеристика бирецепции
В предыдущей главе рассматривался процесс формирования образа в условиях мономануального (одноручного) осязания. Между тем одной из особенностей гаптики, так же как и других сенсорных систем, является парность одноименных рецепторов (бирецепция).
В нормальных условиях зрение обычно осуществляется двумя глазами, слушание – двумя ушами, обоняние – двумя ноздрями, осязание – двумя руками.
В психологии и физиологии накоплены многочисленные факты, раскрывающие значение бирецепции в отражении объективной действительности. Особенно много исследований посвящено бинокулярному зрению. Экспериментально доказано, что абсолютная и различительная чувствительность бинокулярного зрения выше, чем монокулярного. Превосходство бинокулярного зрения над монокулярным особенно ярко проявляется в условиях восприятия под малым углом зрения.
Бинокулярное поле зрения (а поле зрения является одним из важнейших условий протекания зрительных ощущений и восприятий) совершеннее монокулярного.
Общеизвестными являются факты, свидетельствующие о взаимодействии обоих глаз в процессе формирования зрительных ощущений и восприятий. Это – факты бинокулярного смешения цветов и бинокулярного контраста. Сюда же относятся факты изменения чувствительности одного глаза после специального раздражения другого.
Исключительное значение взаимодействие глаз имеет для отражения объемности и локализации воспринимаемого предмета в пространстве. Если отражение освещенности, цвета и контура предметов может осуществляться как монокулярно, так и бинокулярно, то отражение глубины пространства, перспективы (а следовательно, и локализации предмета в пространстве) и отражение объемности тела – преимущественно бинокулярно.
При бинокулярном зрении воспринимаемый предмет проецируется дважды: на сетчатку правого и на сетчатку левого глаза, причем контуры обеих проекций несколько отличаются друг от друга, что зависит от угла, образованного зрительными осями глаз. Различие контуров проекций тем больше, чем ближе к глазу расположен воспринимаемый предмет. Несмотря на то что на сетчатках глаз возникают две различные по контурам оптические проекции предмета, в сознании формируется единый целостный образ одного объемного предмета.
Как показывают данные физиологической оптики, различение объема возможно лишь в том случае, если параллельные лучи света раздражают так называемые диспаратные точки сетчатки обоих глаз. При раздражении корреспондирующих точек сетчатки объемный предмет воспринимается как плоский (кажется плоским). Чрезмерная разность местоположения раздражаемых точек приводит к двоению образа. Для возникновения единого целостного образа объемного предмета необходима умеренная диспаратность. Регулирование величины диспаратности в зависимости от удаления и приближения предметов осуществляется механизмами конвергенции и дивергенции глаз. Эти механизмы играют существенную роль в определении местоположения предмета (локализации) относительно наблюдателя.
Самый факт бинокулярного восприятия объемности предмета и его локализации в пространстве получил название «бинокулярного эффекта».
Преимущества совместной деятельности парных одноименных рецепторов были показаны также в исследованиях слуховых ощущений и восприятий. Бинауральный слух превосходит мензуральный как по точности различения силы, длительности и тембра звуков, так и по звуковысотной чувствительности. Звуковысотная чувствительность бинаурального слуха в 1,5–2 раза превышает чувствительность монаурального.
Специальной функцией бинаурального слуха, как показывают экспериментальные данные, является определение местоположения источника звука (локализация звучащего тела в пространстве). Основой для распознавания местоположения звучащего тела является разность времени прихода звука к каждому из ушей и обусловленная этим разность фаз возбуждения между двумя сигнализациями в кору головного мозга от обоих ушей. Подобно двоению образа при резкой диспаратности раздражения обоих глаз, в области слуха также отмечено двоение одного звука при бинауральном слушании тонов, идущих по направлению в сторону от средней линии головы. Явление локализации звука в пространстве при слушании двумя ушами получило название «бинаурального эффекта».
Преимущества бирецепции раскрыты также в экспериментальных исследованиях обоняния. Установлено, что диринические ощущения (возникающие при раздражении обеих ноздрей) характеризуются большей точностью и скоростью, чем моноринические (возникающие при изолированном раздражении одной ноздри). Специальной функцией диринического обоняния является пространственная локализация источника запаха. Важнейшим условием пространственно-обонятельного различения является одновременное, но не совпадающее по интенсивности, раздражение обонятельных рецепторов обеих половин внутренней полости носа.
Таким образом, как в отношении зрения, так и в отношении слуха и обоняния было установлено, что взаимодействие одноименных рецепторов является механизмом различения местоположения раздражителей (локализации воспринимаемых объектов).
Парность одноименных рецепторов, как показал Ананьев, – это специальное приспособление сенсорных систем, служащее для пространственного различения.
Но этим не исчерпывается жизненное значение бирецепции. Благодаря наличию пар одноименных рецепторов осуществляется взаимный контроль и коррекция показаний каждого из них, а также взаимозамещение (в случае нарушения одного из рецепторов или в случаях затрудненных условий восприятия).
Как же осуществляется взаимодействие одноименных парных рецепторов? Известно, что рецептор является только частью (периферическим концом) более сложного нервного прибора-анализатора. Парности одноименных рецепторов соответствует симметричность в расположении мозговых концов анализаторов. Периферический и мозговой концы анализатора связаны между собой пучком афферентных волокон.
В двигательном и кожном анализаторах афферентные волокна полностью перекрещиваются. Рецепторы каждой половины тела связаны только с одним, контрлатеральным полушарием. В зрительном, слуховом и обонятельном анализаторах перекрест афферентных волокон частичный. Поэтому каждый из рецепторов оказывается связанным с обоими полушариями.
Понять механизмы взаимодействия одноименных парных рецепторов невозможно без анализа парной работы больших полушарий головного мозга. Вопрос бирецепции по существу является лишь частью более общей проблемы парной работы больших полушарий. Впервые эта проблема была поставлена Введенским в статье «О взаимных отношениях между психомоторными центрами», опубликованной в 1897 г.
Изучая взаимоотношения центров двигательной области, Введенский обнаружил, что «каждый раз, как раздражается один из кортикальных центров для передней конечности, это сопровождается понижением раздражительности одноименного центра на другом полушарии…» [48].
Одноименные симметрично расположенные точки обоих полушарий оказываются, таким образом, «стоящими друг к другу во взаимноугнетающих отношениях». Как было доказано более поздними исследованиями Павлова, кортикальные двигательные центры представляют собой скопления ядерных клеток кинестетического анализатора. Очевидно, понижение раздражительности (точнее, возбудимости) одного из полушарий под влиянием раздражения другого объясняется действием закона индукции нервных процессов в мозговом конце кинестетического анализатора: возбуждение ядерных клеток одного полушария вызывает торможение симметричных клеток другого.
Ценный вклад в решение проблемы взаимодействия полушарий внесли исследования Павлова и его школы. В 1923 г. Павлов опубликовал статью, посвященную этому вопросу. «Один из очередных вопросов теперь нарождающейся строго объективной физиологии больших полушарий, – писал он, – есть вопрос относительно парности больших полушарий. Что значит эта парность? Как понимать, как представлять себе одновременную деятельность больших полушарий? Что рассчитано в ней на замещаемость и что, какие выгоды и излишки, дает постоянная соединенная деятельность обоих полушарий?» [189].
Этому вопросу был посвящен целый ряд исследований, проведенных сотрудниками Павлова. Пользуясь методом условных рефлексов, Красногорский, Анреп, Розенталь установили, что как положительные, так и отрицательные условные рефлексы, выработанные на одной половине кожи животного, тончайшим образом воспроизводятся на симметричных местах кожи другой половины тела, причем перенос рефлексов с одной половины тела на другую осуществляется без малейшей предварительной выработки, «с места».
Факт переноса условных рефлексов у человека был позднее экспериментально обнаружен в исследованиях Мирошиной-Тонконогой (в отношении зрительного анализатора) и Рыковой (в отношении кожного анализатора) (психологическая лаборатория Ленинградского государственного ордена Ленина университета им. Жданова). Возможность переноса условных рефлексов с одной стороны тела на другую и составляет «выгоду» совместной работы больших полушарий.
Этот факт (перенос) объясняется действием закона иррадиации нервных процессов: тем, что возбуждение (или торможение), возникнув в одном из полушарий, иррадиирует на другое, захватывая оба полушария.
Исследуя проблему парности больших полушарий, Быков вырабатывал условный рефлекс с одной стороны кожной поверхности, а затем пытался отдифференцировать симметричные участки другой стороны. Оказалось, однако, что такую дифференцировку выработать невозможно. Это обусловлено, очевидно, тем, что симметричные участки обеих половин тела имеют единый механизм корковой регуляции.
Данные Введенского и Павлова на первый взгляд кажутся противоречивыми. По Введенскому, отношения между симметричными пунктами кинестетического анализатора подчинены закону индукции нервных процессов, по Павлову – закону иррадиации.
Однако эти противоречия только кажущиеся. В действительности, как показал Ананьев, взаимодействие полушарий есть процесс, в котором фазы иррадиации сменяются фазами индукции и наоборот, причем смена фаз взаимодействия определяется конкретными условиями деятельности анализаторов. Особый интерес для проблемы парной работы больших полушарий представляют опыты Быкова и Сперанского по изучению условнорефлекторной деятельности собаки с перерезанным мозолистым телом, представляющим собой пучок комиссуральных волокон между полушариями. Опыты показали, что после перерезки мозолистого тела перенос условных рефлексов с одной стороны тела на другую неосуществим.
Изучение условных рефлексов у собаки с перерезанным мозолистым телом показало значение парной работы больших полушарий в пространственном различении. Собака с разобщенными полушариями теряет способность определять местоположение раздражителей с помощью как зрения, так и обоняния. Она теряет способность различать также место кожного раздражения. У оперированной собаки невозможно выработать условный рефлекс и на направление звука. Все это говорит о том, что для пространственной локализации раздражителей необходима соединенная работа полушарий.
Именно соединенная работа полушарий и обеспечивает взаимодействие одноименных парных рецепторов.
Как уже говорилось, при бинокулярном восприятии одного предмета сигналы, поступающие с правого и с левого глаз, различны. Разность сигналов характерна также для бинаурального слуха и диринического обоняния. Однако, несмотря на разность сигналов, в сознании формируется единый целостный образ предмета. Более того, умеренная разность сигналов – необходимое условие пространственной локализации предмета. Интеграция различных сигналов, поступающих от парных рецепторов, в единый целостный образ предмета есть функция соединенной деятельности полушарий головного мозга.
Анатомические, физиологические и психологические исследования в области бирецепции убеждают в том, что любая из пар одноименных рецепторов представляет собой раздвоенное периферическое окончание одного анализатора (а не пару анализаторов). Каждый анализатор выступает, таким образом, как бирецепторный анализатор. Его мозговой конец образован системой ядерных и рассеянных клеток, объединяющих благодаря комиссуральным связям симметричные пункты обоих полушарий.
Афферентные волокна каждого анализатора связывают его мозговой конец с парой одноименных симметрично расположенных рецепторов (рисунок 1.30). В течение многих лет на кафедре психологии ЛГУ под руководством Ананьева изучалась дифференцировка пространственных сигналов с различных анализаторов: зрительного, слухового, кинестетического, обонятельного и др.
Сопоставление экспериментальных данных показало, что для всех анализаторов характерна функциональная асимметрия в работе парных рецепторов. Было обнаружено, что одна из сторон анализатора является в определенных условиях пространственного различения ведущей (ведущий глаз, ведущее ухо и т. д.). Оказалось далее, что функциональная асимметрия в работе любой пары рецепторов неоднозначна. Так, глаз, являющийся ведущим по остроте зрения, может быть не ведущим по прицельной способности или по величине поля зрения и т. д.
Рис. 1.30. Схематическое изображение бирецепторного анализатора:
1 – мозговой конец анализатора, объединяющий проекционные зоны обоих полушарий; 2 – перекрест афферентных путей; 3 – парные рецепторы
Было обнаружено также, что у одного и того же человека с изменением пространственных условий восприятия взаимодействие одноименных рецепторов перестраивается. Так, при малом угле зрения ведущим по прицельной способности является у большинства людей правый глаз. Но при изменении угла зрения от малого до большого ведущим становится левый глаз (опыты Горячевой). Аналогичная картина была обнаружена при исследовании деятельности и других анализаторов.
Экспериментальные данные позволяют считать, что функциональное неравенство в работе парных рецепторов носит условнорефлекторный характер. В зависимости от изменения пространственных условий ощущений и восприятий взаимодействие правой и левой сторон бирецепторного анализатора перестраивается. Эта перестройка связана с изменением динамики (иррадиации и взаимной индукции) нервных процессов [1].
Условнорефлекторная природа функциональной асимметрии свидетельствует о неразрывности основных механизмов высшей нервной деятельности: механизма анализаторов и механизма временных нервных связей. Анализатор выполняет не только функцию анализа, но и функцию синтеза. Механизм временных связей, являясь относительно самостоятельным, оказывается в то же время (по крайней мере в условиях пространственного различения) компонентом механизма анализатора.
Функциональные асимметрии рук
Функциональное разделение правой и левой рук является важнейшей чертой двигательного развития человека. Известно, что при выполнении как элементарных, так и сложных трудовых действий у большинства людей основная двигательная нагрузка приходится на правую руку. Она является ведущей. Левая рука, как правило, выполняет (у правшей) только вспомогательные операции. В некоторых более редких случаях ведущей является левая рука (левшество). Еще реже встречаются люди, одинаково хорошо владеющие как правой, так и левой руками (симметрики). По подсчетам некоторых исследователей, праворукость среди взрослых людей – преобладающее явление и встречается в 70–90 случаях из 100.
Разделение функций рук, характерное для действий человека, отражается и на работе кинестетического анализатора, одна из сторон которого, как правило, является ведущей.
Исследование Поздновой, проведенное на кафедре психологии ЛГОЛУ им. Жданова, показало, что у правшей более развитой в отношении пространственно-двигательной ориентировки является кинестезия правой руки, а у левшей – левой. Позднова использовала в своем исследовании методику, разработанную Кекчеевым для изучения проприоцепции, но внесла в нее одно дополнение: в ее экспериментах испытуемый действовал не только правой (как у Кекчеева), но и левой рукой, что позволило сравнить данные.