Оценить:
 Рейтинг: 0

Есть ли жизнь внутри черных дыр?

Год написания книги
2022
1 2 3 >>
На страницу:
1 из 3
Настройки чтения
Размер шрифта
Высота строк
Поля
Есть ли жизнь внутри черных дыр?
Ю. Н. Ерошенко

В. А. Березин

В. И. Докучаев

В книге очень популярно и доступно рассказывается о теории относительности, черных дырах и устройстве Вселенной. Обсуждается проблема жизни во Вселенной, отчасти, с элементами научной фантазии (но не совсем фантастики).

Есть ли жизнь внутри черных дыр?

В. А. Березин

В. И. Докучаев

Ю. Н. Ерошенко

© В. А. Березин, 2022

© В. И. Докучаев, 2022

© Ю. Н. Ерошенко, 2022

ISBN 978-5-0056-7830-0

Создано в интеллектуальной издательской системе Ridero

В. А. Березин, В. И. Докучаев, Ю. Н. Ерошенко

Есть ли жизнь
внутри черных дыр?

В. А. Березин, В. И. Докучаев, Ю. Н. Ерошенко

Есть ли жизнь внутри черных дыр?

В книге рассказывается о теории относительности и черных дырах, а также рассматриваются ряд смежных вопросов астрофизики – космологии и обсуждается проблема жизни во Вселенной, отчасти, с элементами научной фантазии (но не совсем фантастики). При этом факты об устройстве мира приводятся, за редкими исключениями, «в готовом виде», а история открытий почти не затрагивается. Это позволит читателю быстрее познакомиться с тем, что стало известно в результате многих веков раздумий и исследований ученых.

Предисловие

Точно в центре нашей Галактики находится сверхмассивная ЧЕРНАЯ ДЫРА. На первый взгляд, это нечто ужасное (и даже само название звучит устрашающе), но черная дыра может быть вполне безопасной и даже может стать убежищем и новым комфортным домом для наших отдаленных потомков. В этой книге мы обсудим возможность переселения человечества или других продвинутых цивилизаций в черные дыры. Но сначала нужно понять, что вообще собой представляют черные дыры, каковы их свойства и как они устроены внутри.

Ключевое слово в физике черных дыр – это гравитация, гравитационное поле. Вот именно с гравитации мы и начнем. В первых главах мы кратко расскажем о гравитации и Общей теории относительности, а затем перейдем к черным дырам и другим увлекательным вещам, которые может создавать гравитация. В том числе речь будет идти о тоннелях в пространстве – времени – о кротовых норах. Мы не приводим доказательств и детальных обоснований большинства утверждений, а стараемся лишь отмечать, что из описываемого является твердо установленным фактом, а что – гипотезой или пробной теорией. Также по ходу рассказа мы кратко напомним простейшие сведения об устройстве нашего мира, чтобы стало понятнее, какое место в нем занимают черные дыры.

Главное, что нужно знать о черных дырах, можно выразить буквально в нескольких фразах. Черная дыра – это массивный объект, не имеющий твердой поверхности, но окруженный условной сферической границей, называемой горизонтом событий. Гравитационное поле вблизи горизонта настолько велико, что никакой предмет, не может вылететь из черной дыры наружу, если он в нее упал. Из-под горизонта выбраться нельзя. Даже свет не может покинуть черную дыру, потому этот объект и был назван «черным». Не отпуская от себя свет, он должен выглядеть со стороны как черное пятно. Черные дыры с массами, в несколько раз превосходящими массу Солнца, образуются при сжатии и взрывах звезд после выгорания в них ядерного топлива. Обычно это сопровождается вспышками сверхновых. Другие варианты образования черных дыр – это сжатие массивных облаков газа или звездных скоплений в центрах галактик, либо слияние множества мелких черных дыр в одну большую. В этом случае образуются сверхмассивные черные дыры с массами, в миллионы и миллиарды раз большими массы Солнца. Масса черной дыры может быть сконцентрирована в ее центре – в центральной точке, называемой сингулярностью. В этом случае между горизонтом и сингулярностью находятся пустые пространства или выходы в другие вселенные. Это означает, что внутри черной дыры много свободного места. И весьма возможно, что там обосновались и счастливо живут продвинутые цивилизации.

Мы пользуемся многими вещами, не зная, как они устроены внутри, из чего сделаны и как функционируют. Например, можно смотреть телевизор, уметь переключать каналы, и для этого не обязательно разбираться в электронике и знать внутреннее устройство телевизора, если только мы не специалисты из ремонтной мастерской или конструкторы электронной техники. Примерно так же мы можем пользоваться многими функциями данного нам мира, быть его «юзерами», не зная его устройство. Но некоторых людей это не удовлетворяет, и они стремятся понять мир, разобраться в его устройстве и даже улучшить его.

Для понимания черных дыр нам тоже придется побыть немного в роли специалистов – физиков, заглянуть внутрь и в суть физических вещей. Начать рассказ о черных дырах придется издалека. Сначала мы опишем сцену, на которой выступают наши главные герои – черные дыры, и постепенно перейдем к самим черным дырам. Этой сценой является наша Вселенная – космос, в которой действуют законы физики. А из физических законов нам, прежде всего, понадобятся законы теории относительности.

Теория относительности

При скоростях движения тел, сравнимых со скоростью света, и в сильных гравитационных полях, существующих вблизи черных дыр, обычная земная физика и законы Ньютона становится неприменимыми. В этом случае необходимо использовать эйнштейновскую теорию относительности.

Специальная теория относительности

Сначала в 1905г. А. Эйнштейн создал Специальную теорию относительности, которая не затрагивала гравитацию. А через 10 лет в 1915 г. он сформулировал в окончательном виде теорию гравитационного поля, которая называется Общей теорией относительности. Эти теории заслуживают того, чтобы их названия писались с большой буквы (хотя обычно пишут с малой). Расскажем сначала о Специальной теории относительности.

Эйнштейн выбрал в качестве исходных постулатов два утверждения, несовместимых в ньютоновской физике: (1) принцип относительности, гласящий, что в инерциальных системах отсчета все законы природы записываются одинаково; (2) скорость света в таких системах тоже одинакова.

Самое главное, о чем говорит Специальная теория относительности, это относительность одновременности и относительность интервалов времени. Время течет по – разному для движущихся друг относительно друга наблюдателей. Если для одного из них два каких – то события происходят одновременно, то для второго они не одновременные. Одно событие случается раньше, а второе позже. Конечно, чтобы различие по времени было заметно, движение должно происходить с достаточно большой скоростью, сравнимой со скоростью света. В случае привычных нам скоростей, с которыми движутся автомобили, самолеты и даже спутники Земли, эти эффекты замедления времени очень малы, и их можно заметить только с помощью точнейших приборов. На обычных часах разницу мы не сможем увидеть. А вот для космических путешествий далекого будущего эти эффекты замедления времени могут стать большими и принципиально важными.

Итак, давайте запомним, что нет универсального времени, время может течь по – разному. Движение наблюдателя изменяет скорость хода его часов с точки зрения другого наблюдателя. Эти утверждения проверены на опыте тысячи раз и совершенно достоверны.

До создания теории относительности люди были убеждены, основываясь на своем жизненном опыте, что можно выбрать единое глобальное время, которое течет везде равномерно, и которое одинаково для всех движущихся тел. Также предполагалось, что пространство задано – оно выглядит одинаково для всех и обладает евклидовой геометрией. В обычных земных масштабах при не очень больших скоростях это вполне разумные предположения. Но при высоких скоростях и в сильных гравитационных полях они становятся неточными.

Движение тел происходит в пространстве и во времени. Чтобы количественно описать форму тел и их движение, необходимо каким – то способом произвести измерения расстояний и длительностей. Для этого нужны линейки и часы. Для единообразия выбираются определенные единицы времени и длины, такие, как секунда и метр. А от этих основных единиц производятся более мелкие или более крупные, к примеру, час и километр. Мысленно можно представить, что часы и линейка есть в каждом месте. Вся эта воображаемая совокупность линеек и часов, движущаяся определенным образом, называется системой отсчета. Если взять другой набор часов и линеек, движущихся иначе, то мы получим другую систему отсчета. Например, пассажиры движущегося поезда находятся в одной системе отсчета, а люди, стоящие на перроне, – в другой.

В Специальной теории относительности особую роль играют системы отсчета, называемые инерциальными. Это такие системы, в которых тело будет двигаться равномерно и прямолинейно, если на него не действуют внешние силы. То есть, то же самое, что и в ньютоновской теории. Тело, на которое ничто не воздействует, сохраняет состояние покоя или равномерного прямолинейного движения. Космический корабль можно с хорошей точностью считать инерциальной системой отсчета, когда он летит с выключенными двигателями в далеком космосе. Принцип относительности утверждает, что все инерциальные системы отсчета равноправны. Это означает, прежде всего, что физические законы должны записываться одинаково во всех инерциальных системах отсчета.

А. Эйнштейн сначала интуитивно осознал относительность времени, а затем получил это свойство времени из двух сформулированных им постулатов – исходных предположений теории. Первый постулат Специальной теории относительности – это только что обсуждавшийся нами принцип относительности. Он гласит, что физические законы, которым подчиняются явления во всех инерциальных системах отсчета, одинаковы. А второй постулат Специальной теории относительности утверждает, что скорость света во всех системах отсчета одна и та же. Поразительно, но вместо умозрительной, но совершенно невообразимой бесконечной скорости распространения сигнала, сама Природа дала нам абсолютную = универсальную = инвариантную скорость. Скорость света.

Важно еще договориться о том, как измерять время. Какая польза от часов, если все часы показывают разное время? Люди не смогут согласовать, к примеру, время встречи. Эйнштейн предложил очень простой рецепт синхронизации часов, находящихся вдали друг от друга. Пусть в инерциальной системе отсчета в разных точках покоятся двое одинаковых часов. Необходимо из первой точки послать луч света во вторую и принять отраженный свет. Если, например, в момент испускания луча первые часы показывают час дня, а в момент приема отраженного сигнала они показывают три часа дня, то время вторых часов в момент отражения нужно установить точно посредине – на двух часах дня.

Вот и все. Два простых постулата и методика синхронизации часов. Этого достаточно для формулировки Специальной теории относительности. Отсюда путем логических рассуждений можно получить множество важных следствий, которые мы обсудим в следующем разделе.

Эффекты Специальной теории относительности

Специальная теория относительности говорит о том, что время в движущейся относительно нас инерциальной системе отсчета течет медленнее по сравнению со временем в той инерциальной системе отсчета, где мы находимся и которую считаем неподвижной. И наоборот, с точки зрения наблюдателя в движущейся системе отсчета время в нашей системе течет медленнее. Этот наблюдатель считает, что покоится он, а движемся мы. На первый взгляд относительность времени выглядит странной, но никакого противоречия здесь нет. Каждый из наблюдателей в инерциальных системах отсчета будет видеть, что часы у других наблюдателей отстают. Эта симметрия будет сохраняться до тех пор, пока системы отсчета являются инерциальными.

Хорошо известен парадокс близнецов. Один из братьев – близнецов остается на Земле, а второй садится в ракету и летит с большой скоростью. Где – то далеко ракета разворачивается, летит обратно и возвращается на Землю. Тот брат, который совершил путешествие, окажется моложе брата, остававшегося на Земле. Брат в ракете может оставаться еще ребенком, когда его близнец на Земле превратится в глубокого старика. Хотя эта ситуация и называется парадоксом, никаких логических противоречий в ней нет. Обычно задают вопрос, почему больше состарился именно брат на Земле, хотя движение относительно, и, казалось бы, не должно быть разницы, кого из братьев считать неподвижными? Дело в том, что система Земли с хорошей точностью инерциальная, к ней применима Специальная теория относительности. Тот, что в ракете, сначала ускорялся, и темп времени у него замедлялся, а затем замедлялся при приближении к Земле, и темп времени у него ускорялся. Поэтому близнецы находились в неравноправных условиях. Вот поэтому мы и подчеркивали важность инерциальных систем отсчета! И факт подобного замедления времени подтвержден во множестве экспериментов. Экспериментировали, правда, пока не с людьми, а с элементарными частицами и атомными часами.

Длина движущихся тел сокращается в направлении их движения. Например, движущийся круг с точки зрения неподвижного наблюдателя станет эллипсом, сплющенным в направлении движения. Для измерения длины движущегося стержня необходимо отметить положение его концов в один и тот же момент времени по часам в неподвижной системе отсчета. При этом наблюдатель, движущийся вместе со стержнем, будет утверждать, что по его часам отметки были сделаны не одновременно. И противоречия здесь опять – таки нет, потому что одновременность – понятие относительное. Для одного наблюдателя два события одновременные, а для другого наблюдателя те же самые события не одновременные.

Скорость света является максимально возможной для скорости движения материальных тел и для скорости передачи сигналов. Ничто материальное не может обогнать свет. Если двигатели в ракете работают на полную мощность, скорость ракеты будет становиться все ближе и ближе к скорости света, но никогда ее не достигнет. Ракета всегда будет чуть – чуть отставать от света.

Но это не значит, что вообще не существует скоростей, больших скорости света. Например, если посветить фонариком на Луну, быстро смещая руку, то свет фонарика пробежит по поверхности Луны со скоростью, большей, чем скорость света. Противоречия со сказанным выше здесь нет, потому что граница светового пятна – это не материальное тело. Наблюдатель на одной стороне лунного диска не сможет передать сверхсветовое сообщение наблюдателю на другой стороне диска с помощью земного фонарика, т.к. он сначала должен передать нам на Землю указание о том, что мы должны делать с лучом фонарика, а это сообщение будет двигаться со скоростью света, и в итоге скорость передачи сообщений с одного края Луны на другой не превысит скорости света.

Одно из впечатляющих следствий Специальной теории относительности – это эквивалентность массы и энергии. В любой массе заключено огромное количество энергии, проблема только в том, как ее оттуда добыть. Добыть энергию удается, например, в ядерных реакциях. Управляемые ядерные реакции идут в реакторах атомных электростанций. Ядерная энергия дает колоссальную силу ядерным взрывам и является источником свечения звезд.

Как ни странно, до сих пор в интернете и даже в средствах массовой информации появляются «опровержения» теории относительности. Иногда говорят о том, что эйнштейновская теория ошибочная, или что она ничем не подтверждена. Спорить с подобными высказываниями – это все равно, что сейчас в XXI – м веке с серьезным видом опровергать утверждение, что Земля плоская и стоит на трех китах. Мы также не будет заниматься подобными опровержениями, а заметим просто, что Специальная теория относительности давно уже прошла путь от теории до инженерной дисциплины. По ее принципам строятся и работают ускорители элементарных частиц. Поправки от теории относительности учитываются даже в спутниковых навигаторах, которые есть в автомобилях и в смартфонах.

Специальная теория относительности объединяет пространство и время в единую сущность «пространство – время». Нет по отдельности пространства, и нет времени, а существует только их единство. С некоторых точек зрения это единство проявляется как пространство, а с других точек зрения – как время. Причем, пространство и время могут переходить или превращаться друг в друга при изменении системы отсчета.

Понятие единого пространства – времени помогло сформулировать Общую теорию относительности, о которой речь пойдет в следующей главе.

Общая теория относительности – искривленное пространство – время

По словам Льва Давидовича Ландау и Евгения Михайловича Лифшица, Общая теория относительности «является, пожалуй, самой красивой из существующих физических теорий». Антуан де Сент – Экзюпери в замечательной книге «Планета людей» писал: «Сила тяготения показалась мне всемогущей, как любовь». И сейчас мы более предметно переходим к основной теме данной книге – к всемирному тяготению (гравитации), которое описывается Общей теорией относительности. Общая теория относительности действительно очень красивая, сильная и волнующая теория.

1 2 3 >>
На страницу:
1 из 3