Оценить:
 Рейтинг: 4.67

Красота физики. Постигая устройство природы

Год написания книги
2015
Теги
<< 1 2 3 4 5 6 >>
На страницу:
2 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

• Брунеллески привнес новые идеи в геометрию для нужд искусства и инженерного дела. Его проективная геометрия, которая имеет дело с реальным обликом вещей, принесла с собой идеи – об относительности, инвариантности, симметрии – не только красивые сами по себе, но и открывающие новые возможности.

• Ньютон вывел математическое понимание Природы на совершенно новый уровень притязаний и точности.

Общая идея пронизывает титаническую работу Ньютона над светом, математическим исчислением, движением и механикой. Это метод, который он называл Анализ и Синтез. Метод анализа и синтеза предлагает двухступенчатую стратегию для достижения понимания. В стадии анализа мы рассматриваем мельчайшие части того, что мы изучаем, – его «атомы» – в метафорическом смысле этого слова. В случае удачного анализа мы определяем малые части с простыми свойствами, которые можно резюмировать в виде точных законов. Например:

• в изучении света атомы – это лучи чистых спектральных цветов;

• в изучении исчисления атомы – это бесконечно малые и их отношения:

• в изучении движения атомы – это скорость и ускорение;

• в изучении механики атомы – это силы.

(Мы подробнее обсудим все это позже.) В стадии синтеза мы переходим с помощью логических и математических доводов от поведения отдельных атомов к описанию систем, которые содержат множество атомов.

Описанный в таком общем виде, ньютоновский Анализ и Синтез не выглядит слишком впечатляюще. В конце концов, он близок к обычным практическим методам, например, «чтобы решить сложную проблему, разделяй и властвуй» – а это едва ли возбуждающее открытие. Но Ньютон потребовал точности и полноты понимания, говоря:

Гораздо лучше сделать немного, но наверняка, а остальное оставить для других, которые придут после вас, чем объяснять все вещи с помощью гипотез, не будучи уверенным ни в чем до конца.

И в этих впечатляющих примерах он достиг своих целей. Ньютон убедительно показал, что Природа сама идет по пути анализа и синтеза. В «атомах» действительно есть простота, и Природа действительно функционирует, позволяя им делать свое дело.

Ньютон также в своей работе о движении и механике обогатил наше представление о том, что такое физические законы. Его законы движения и гравитации – это динамические законы. Другими словами, это законы изменения. Такие законы воплощают идею красоты, отличную от статического совершенства, которое так любили Пифагор и (особенно) Платон.

Динамическая красота выходит за пределы отдельных предметов и явлений и призывает нас постичь широту возможностей. Например, размеры и формы настоящих орбит планет не просты. Они не являются ни (усложненными) окружностями Аристотеля, Птолемея или Николая Коперника, ни даже почти правильными эллипсами Кеплера – это скорее кривые, которые нужно вычислять как функции времени, изменяющиеся сложным образом в зависимости от положений и масс Солнца и остальных планет. В этом есть восхитительная красота и простота, но это полностью очевидно только тогда, когда мы понимаем внутреннее устройство. Видимые проявления отдельных предметов не исчерпывают красоту законов.

• Максвелл был первым по-настоящему современным физиком. Его работа по электромагнетизму возвестила одновременно новое представление о реальности и новый метод в физике. Новое представление, которое Максвелл развил из догадок Майкла Фарадея, состоит в том, что элементарные составляющие физической реальности – это не точечные частицы, а скорее наполняющие пространство поля. Новый метод – это метод вдохновленных догадок (inspired guesswork). В 1864 г. Максвелл кратко записал известные законы электричества и магнетизма в виде системы уравнений, но понял, что полученная система противоречива. Как и Платон, который подогнал пять идеальных тел под четыре элемента и Вселенную, Максвелл не сдался. Он заметил, что если добавить еще одно слагаемое, то уравнения можно сделать одновременно более симметричными и математически непротиворечивыми. Полученная система, известная под названием уравнений Максвелла, не только объединила электричество и магнетизм, но и имела следствием описание света, и она дожила до наших дней в качестве надежных обоснований этих явлений.

Чем же воодушевляются «вдохновленные догадки» физика? Логическая непротиворечивость необходима, но едва ли достаточна. Скорее Максвелла и его последователей – т. е. всех современных физиков – подвели ближе к истине красота и симметрия, как мы далее увидим.

Максвелл в работе по восприятию света также открыл, что аллегорическая Пещера Платона отражает нечто довольно реальное и конкретное: ничтожность нашего чувственного восприятия по сравнению с доступной реальностью. И его работа, проливая свет на границы восприятия, позволяет нам выйти за эти границы. Ведь лучшее средство для развития чувственных способностей – это ищущий ум.

Квантовое завершение

Решительное «да» на наш Вопрос прозвучало только в XX в., когда была разработана квантовая теория.

Квантовая революция привела к такому открытию: мы наконец узнали, что такое Материя. Необходимые уравнения являются частью теоретической структуры, которую часто называют Стандартной моделью. Такое наводящее зевоту название едва ли отдает должное этому достижению, и я продолжу свою кампанию, начатую в «Легкости бытия[2 - Полное название предыдущей книги автора – «Легкость бытия: масса, эфир и объединение взаимодействий» (The Lightness of Being: Mass, Ether, and the Unification of Forces, 2008).]», по его замене на кое-что более подходящее и потрясающее:

Стандартная модель ? Главная теория.

Это изменение более чем оправданно, и вот почему.

1. «Модель» ассоциируется с временным суррогатом, который ждет замена на «настоящую вещь». Но Главная теория уже является точным представлением физической реальности, которое любая будущая гипотетическая «настоящая вещь» должна принимать во внимание.

2. «Стандартная» ассоциируется с «общепринятой» и намекает на наличие какого-то высшего знания. Но такого высшего знания нет. На самом деле я думаю – и тому есть горы свидетельств, – что, хотя Главная теория будет дополнена, ее сердцевина останется прежней.

Главная теория воплощает красивые идеи. Уравнения для атомов и света почти буквально совпадают с уравнениями, которым подчиняются музыкальные инструменты и звук. Горстка изящных схем лежит в основе богатого разнообразия устройства Природы, начиная с простых структурных компонентов материального мира.

Наши Главные теории четырех взаимодействий в Природе – гравитации, электромагнетизма, сильного и слабого взаимодействий – воплощают по своей сути общий принцип: локальную симметрию. Как вы прочитаете далее, этот принцип одновременно осуществляет чаяния Пифагора и Платона о гармонии и понятийной чистоте, а также выходит за их пределы. Как вы увидите, этот принцип строится на художественной геометрии Брунеллески и блестящих озарениях Ньютона и Максвелла о природе света, и в то же время он выходит за их рамки.

Главная теория завершает анализ материи для практических целей. Используя ее, мы можем сделать вывод о том, какие виды атомных ядер, атомов, молекул – и звезд – могут существовать. И мы можем надежно управлять поведением более крупных скоплений этих элементов, чтобы создавать транзисторы, лазеры или Большие адронные коллайдеры. Уравнения Главной теории проверены с гораздо большей точностью и при гораздо более экстремальных условиях, чем это нужно для их применения в химии, биологии, инженерном деле или астрофизике. Хотя, конечно, существуют вещи, которых мы не понимаем, – и совсем скоро я упомяну несколько важных из них – мы действительно понимаем устройство Материи, из которой мы состоим и с которой сталкиваемся в обычной жизни (даже если мы химики, инженеры или астрофизики).

Несмотря на свои огромные достоинства, Главная теория не идеальна. Действительно, именно потому, что это описание реальности настолько верно, мы должны в поисках ответа на наш Вопрос оставаться на самом высоком эстетическом уровне. Если пристально рассмотреть Главную теорию, в ней обнаруживаются недостатки. Ее уравнения кривобоки, и они содержат несколько мало связанных друг с другом кусков. Больше того, Главная теория не объясняет существования так называемых темной материи и темной энергии. Хотя этими неуловимыми формами материи можно пренебречь при рассмотрении нашего ближайшего окружения, они занимают прочные позиции в межзвездном и межгалактическом пространстве и потому оказываются преобладающими в общей массе Вселенной. По этой и другим причинам мы не можем оставаться удовлетворенными.

Попробовав вкус красоты в сердце мира, мы жаждем большего. В этих поисках, я думаю, нет более многообещающего проводника, чем сама красота. Я дам вам некоторые подсказки, которые наводят на мысль о конкретных возможностях улучшения нашего описания Природы. Так как я стремлюсь к вдохновленным догадкам, в красоте мое воодушевление. Как вы увидите ниже, для меня это уже несколько раз сработало.

Разновидности красоты

У разных художников разные стили. Мы не ожидаем найти приглушенные цвета Ренуара в мистическом полумраке Рембрандта или утонченность Рафаэля у любого из двух предыдущих. Музыка Моцарта пришла из совершенно иного мира, чем музыка The Beatles, а музыка Луи Армстронга – еще из третьего. Точно так же красота, воплощенная в физическом мире, – это особый вид красоты. Природа как художник имеет свой особый стиль.

Чтобы оценить по достоинству искусство Природы, мы должны проникнуть в ее стиль с пониманием. Галилей выразил это, как всегда красноречиво, следующим образом:

Философия [Природа] описана в этой великой книге, которая всегда находится у нас перед глазами – я имею в виду Вселенную, – но мы не можем понять ее, если мы не выучим сначала ее язык и не поймем ее символов, с помощью которых она написана. Эта книга написана математическим языком, и ее символы – это треугольники, круги и другие геометрические фигуры, без помощи которых невозможно понять в ней ни одного слова; без которых будешь тщетно бродить по темному лабиринту.

Сегодня мы гораздо дальше проникли в суть этой великой книги и открыли, что ее позднейшие главы используют более изобретательный и менее привычный язык, чем евклидова геометрия, которую знал Галилей. Чтобы начать бегло на нем разговаривать, потребуется целая жизнь (или, по крайней мере, несколько лет магистратуры и/или аспирантуры). Но так же, как диплом по истории искусств не является необходимым условием для того, чтобы заинтересоваться мировым искусством и найти этот опыт очень приятным, так и я надеюсь этой книгой помочь вам увлечься искусством Природы, сделав стиль последней доступным для вас. Ваши усилия будут вознаграждены, ибо, как мог бы сказать Эйнштейн:

Природа изощрена, но не злонамеренна.

Две навязчивые идеи являются характерными для стиля Природы:

• Симметрия – любовь к гармонии, равновесию и пропорциональности.

• Экономия – удовольствие от создания большого разнообразия явлений очень ограниченным числом способов.

Наблюдайте за тем, как повторяются, ширятся и развиваются эти мотивы сквозь весь наш рассказ и дают ему единство. Восприятие этих идей происходило интуитивно, часто принятием желаемого за действительное, однако привело к созданию точных, действенных и плодотворных методов познания.

Теперь нужна небольшая оговорка. Многие разновидности красоты плохо представлены в стиле Природы в смысле выраженности в ее фундаментальной операционной системе. Наше восхищение человеческим телом и наша увлеченность выразительными портретами, наша любовь к животным и к природным ландшафтам – и многие другие источники художественной красоты – наукой не задействованы. Но наука это не всё, что есть на свете, слава богу.

Понятия и реальности; Разум и материя

Наш Вопрос можно понимать двояко. Наиболее очевидно, что он является вопросом о мире. Это то значение, на которое мы делали упор до настоящего момента. Но и второе значение столь же завораживающее. Когда мы обнаруживаем, что наше чувство прекрасного осуществляется в физическом мире, мы узнаем что-то о мире, но также мы узнаем кое-что о себе.

Понимание человеком фундаментальных законов Природы – достижение недавнее по эволюционным или даже историческим меркам. Кроме того, эти законы открываются нам только в результате тщательно продуманных экспериментов: использования совершенных микроскопов и телескопов, деления атомов и ядер, а также обработки длинных цепочек математических умозаключений. Все это само по себе не приходит. Наше чувство прекрасного никак напрямую не приспособлено к фундаментальным работам Природы. И все-таки с той же уверенностью можно сказать, что наше чувство прекрасного откликается на то, что мы в них находим.

Что же объясняет эту восхитительную гармонию Разума и Материи? Без объяснения этого чуда наш Вопрос остается без ответа. Эта тема будет затронута в нашей медитации неоднократно. А сейчас два коротких предварительных рассуждения:

1. Мы, люди, в первую очередь визуальные существа. Конечно, наше зрение и наши самые глубинные виды мышления (множеством менее очевидных способов) обусловлены нашим взаимодействием со светом. Каждый из нас, например, рожден, чтобы в совершенстве, хотя и неосознанно, практиковать проективную геометрию. Эта способность жестко вмонтирована в наш мозг. Именно это позволяет нам интерпретировать двумерное изображение, которое получает наша сетчатка, как представление о мире объектов в трехмерном пространстве.

Наш мозг содержит специализированные модули, которые позволяют нам быстро и без сознательных усилий создавать динамическое представление о мире, в основе которого – трехмерные объекты, расположенные в трехмерном пространстве. Мы делаем это, начиная с двумерных изображений на нашей сетчатке глаз (которые, в свою очередь, образуются благодаря лучам света, испущенным или отраженным от поверхностей внешних предметов, которые распространяются до нас по прямой). Восстановить из полученных нами изображений предметы, которые были их причиной, – непростая задача в инверсной проективной геометрии. На самом деле утверждается, что это неразрешимая задача, потому что в проекциях совершенно недостаточно информации, чтобы сделать однозначную реконструкцию. Основная проблема в том, что, даже чтобы просто начать ее решать, нам нужно отделить объекты от их фона (или от того, что находится перед ними). Чтобы достичь этого, мы пользуемся всевозможными уловками, основанными на типичных свойствах объектов, которые нам встречаются, таких как их цвет или контрастность текстуры и отчетливые границы. Но даже после того, как эта стадия успешно пройдена, нам остается сложная геометрическая задача, для которой Природа любезно снабдила нас превосходным специализированным процессором в нашей зрительной коре[3 - Часть коры головного мозга, которая принимает и обрабатывает чувствительные нервные импульсы от глаз. – Прим. пер.].

Другая важная черта нашего зрения состоит в том, что свет приходит к нам очень издалека и дает нам возможность заниматься астрономией. Видимое регулярное движение звезд и чуть менее систематическое движение планет послужили ранними намеками на подчинение Вселенной определенным законам и предоставили нам изначальное вдохновение и поле для проверки математического описания Природы. Как любой хороший учебник, оно содержит задачи различной степени сложности.

В самых передовых, современных разделах физики мы узнаем, что свет сам является формой материи, а также то, что на самом деле и материя в целом, при глубоком ее понимании, необыкновенно похожа на свет. Итак, еще раз: наш интерес и опыт соприкосновения со светом, который глубоко заложен в самой нашей природе, оказываются удачными и способствующими познанию.

Существам, которые, как большинство млекопитающих, воспринимают мир прежде всего через обоняние, было бы гораздо сложнее добраться до той физики, которую мы знаем, даже если бы они обладали высоким интеллектом в других областях. Можно вообразить, например, собак, эволюционирующих в очень умных социальных существ, с развитым языком, живущих интересной полной жизнью, но лишенных отдельных видов любопытства и мироощущения, которые основаны на зрительном опыте и которые ведут к нашему виду глубокого понимания физического мира. Их мир был бы полон синтезов и разложений – у них были бы прекрасные наборы для химии, сложная кухня, афродизиаки и, как у Пруста, непроизвольная память. Проективная геометрия и астрономия, возможно, не были бы так представлены. Мы знаем, что запах – это химическое чувство, и мы начинаем понимать его основы в виде молекулярных событий. Но «обратная» задача понять по запаху, какие молекулы вызвали его и какие законы им свойственны, и в конце концов прийти к физике, какой мы ее знаем, кажется мне безнадежно сложной.

Птицы же – визуальные существа, как и мы. Кроме того, их образ жизни дал бы им дополнительное преимущество перед людьми в том, чтобы начать понимать физику. Птицы с их свободой полета испытывают присущую трехмерному пространству симметрию столь хорошо знакомым им способом, которого у нас нет. Они также испытывают основные законы движения (и особенно роль инерции в своей повседневной жизни), так как они существуют в практически лишенной трения среде. Птицы рождаются, можно сказать, с интуитивным знанием классической механики и принципа относительности Галилея, так же как и геометрии. Если бы какие-нибудь виды птиц развили хорошее абстрактное мышление, т. е. перестали бы иметь «птичьи мозги», они бы быстро создали физику. А вот людям пришлось отучиваться от нагруженной трением аристотелевой механики, чтобы достичь более глубокого понимания. Исторически для этого потребовались немалые усилия!

Дельфины в их водной среде и летучие мыши с их эхолокацией предоставляют нам другие вариации на эту тему, но я не буду развивать их здесь.
<< 1 2 3 4 5 6 >>
На страницу:
2 из 6