Оценить:
 Рейтинг: 4.67

Красота физики. Постигая устройство природы

Год написания книги
2015
Теги
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Если спиралевидная улитка является для слуха тем же, чем глаз для зрения, то кортиев орган – это его сетчатка. Он работает параллельно с базилярной мембраной и находится очень близко от нее. Его детальная структура сложна, но, грубо говоря, он состоит из волосковых клеток и нейронов, причем каждая волосковая клетка связана со своим собственным нейроном. Движение базилярной мембраны, проходящее через промежуточную жидкость, передает усилие на волосковые клетки. Волосковые клетки двигаются в ответ, и их движение вызывает электрическое возбуждение[8 - Так называемый потенциал действия. – Прим. ред.] в соответствующих нейронах. Его частота остается той же, что и частота стимуляции, которая, в свою очередь, абсолютно такая же, как частота первоначального звука. (Для тех, кто хочет знать больше: частотные характеристики возбуждения зашумлены, но они содержат сильный компонент с частотой исходного сигнала.) Из-за того, что кортиев орган примыкает к базилярной мембране, его нейроны возбуждаются с частотой, зависящей от их пространственного расположения. Для нашего восприятия созвучий очень важно, что сигналы от нескольких одновременно звучащих тонов не полностью смешиваются. На различные тоны преимущественно отзываются разные нейроны! Таков физиологический механизм, который позволяет нам так хорошо различать тоны.

Другими словами, наше внутреннее ухо следует совету Ньютона – и предвосхищает его опыты со светом, проводя великолепный анализ с разложением поступающего звука на чистые тона. (Как мы обсудим позже, наша сенсорная способность анализировать частоту световых сигналов или, другими словами, цветовую составляющую света основана на других принципах и гораздо более ограничена.)

Теперь мы можем перейти к третьей части нашей истории. В ней сигналы от первичных сенсорных нейронов в кортиевом органе сочетаются и переходят в последующие нейронные слои в мозге. О том, что происходит здесь, мы знаем не так точно. Но только на этой стадии мы можем подойти вплотную к нашему главному вопросу:

«Почему звуки, частоты которых соотносятся как небольшие целые числа, дают приятное созвучие?»

Давайте рассмотрим, что происходит в мозге, когда звуки двух различных частот проигрываются одновременно. Тогда мы получаем два набора первичных нейронов, активно реагирующих с той же частотой, как и вибрация струны, породившая всю цепочку процессов. Эти первичные нейроны передают свой сигнал в глубины мозга «более высоким» уровням нейронов, где сигналы сочетаются и объединяются.

Некоторые из этих нейронов следующего уровня получат входящие сигналы от обоих наборов первичных возбужденных нейронов. Если частоты первичных нейронов соотносятся как небольшие целые числа, тогда их сигналы могут быть синхронизированы. (В этом обсуждении мы упрощаем реальный отклик, игнорируя шум и считая его в точности периодичным.) Например, если звуки формируют октаву, один набор нейронов будет колебаться в два раза быстрее другого и каждый нейрон из более медленной группы будет вступать в те же предсказуемые отношения с нейроном быстрой. Таким образом, нейроны, воспринимающие сигнал от обоих первичных наборов, получат вполне предсказуемый повторяющийся шаблон, который легко интерпретировать. Из предыдущего опыта (хотя, возможно, это врожденный инстинкт) эти вторичные нейроны – или более поздние нейроны, интерпретирующие их поведение, – «поймут» сигнал. Таким образом, для них становится легче предсказать будущие входящие сигналы (следующие повторы), а простые предсказания будущего поведения будут порождаться на протяжении многократных восприятий вибрации, пока звук не изменит свой характер.

Хочу отметить, что звуки, которые мы можем слышать, имеют частоты в пределах от нескольких десятков до нескольких тысяч колебаний в секунду, так что даже краткие звуки производят множество повторений, за исключением самых низкочастотных. На низких же частотах наше чувство гармонии иссякает, точно так же, как и эта мысль, которую я сейчас пытаюсь додумать.

Более высоким уровням нейронов, которые сочетают уже объединенные сигналы, нужен понятный входной сигнал, чтобы справиться со своей работой. Поэтому если наши «объединители» производят имеющий смысл сигнал и в особенности если их предсказания проходят проверку по времени, то в интересах нейронов более высокого уровня вознаградить их какой-либо положительной обратной связью или по крайней мере оставить в покое. И наоборот, если «объединители» производят неправильные предсказания, ошибки будут распространяться на более высокие уровни, немедленно породив дискомфорт и желание прекратить этот процесс.

Когда «объединители» будут производить неверные предсказания? Это произойдет, когда первичные сигналы почти, но не совсем синхронизированы. В этом случае колебания будут усиливать друг друга в течение нескольких циклов, и «объединители» проэкстраполируют эту модель. Они будут ожидать, что она продолжится, но этого-то и не произойдет! И в самом деле, звуки, которые только слегка различаются (как до и до-диез, например), особенно неприятны, если проигрываются вместе.

Если эта идея правильна, тогда в основе гармонии лежит успешное предсказание на ранних стадиях восприятия. (Этот процесс предсказания не нуждается и обычно не сопровождается привлечением сознательного внимания.) Успех в нем воспринимается как удовольствие или красота. Напротив, неудачное предсказание – источник боли или ощущения безобразия. Отсюда следует, что, расширяя наш опыт и знания, мы можем услышать гармонию, которая раньше была скрыта от нас, и избавиться от источников боли.

В историческом развитии западной музыки набор приемлемых комбинаций звуков постепенно расширялся. Отдельные люди при повторяющемся воздействии незнакомых им ранее мелодий также могут научиться наслаждаться сочетаниями звуков, которые изначально показались им неприятными. В самом деле, если мы заточены под то, чтобы получать удовольствие, учась делать удачные предсказания, тогда предсказания, давшиеся нам слишком легко, не доставят нам того огромного удовольствия, которое и должно быть в новизне.

Платон I: Структура из симметрии – платоновы тела

Платоновы тела поддерживают вокруг себя какую-то магию. Они всегда были и остаются теми объектами, с которыми можно творить волшебство. Они уходят корнями глубоко в доисторическую пору человечества и живут сейчас как предметы, сулящие удачу или неудачу в самых известных настольных играх, в частности в знаменитых «Подземельях и драконах». Кроме того, их таинственная сила вдохновила ученых на некоторые из самых плодотворных открытий в развитии математики и физики. Их невыразимая красота достойна того, чтобы поглубже сконцентрироваться на них.

Альбрехт Дюрер на своей гравюре «Меланхолия I» (илл. 4) подразумевает очарование правильных многогранников, хотя тело, изображенное на его картине, не вполне платоново. (Технически это усеченный треугольный трапецоэдр. Он может быть получен растягиванием граней октаэдра определенным образом.) Возможно, Крылатый Гений впал в меланхолию, потому что не может вникнуть, почему злобная летучая мышь сбросила ему в кабинет именно это, не вполне платоново тело вместо правильной фигуры.

Илл. 4. Альбрехт Дюрер «Меланхолия I»

На картине изображено усеченное платоново тело, магический квадрат и множество других эзотерических символов. С моей точки зрения, она прекрасно показывает досаду, которую я часто испытываю, пытаясь с помощью чистой идеи понять реальность. К счастью, так бывает не всегда.

Правильные многоугольники

Прежде чем перейти к платоновым телам, давайте начнем с чего-нибудь попроще – с их самых близких аналогов в двух измерениях, а именно с правильных многоугольников. Правильный многоугольник – это плоская фигура, у которой все стороны равны и смыкаются под равными углами. Самый простой правильный многоугольник имеет три стороны – это равносторонний треугольник. Далее идет квадрат с четырьмя сторонами. Затем – правильный пятиугольник, или пентагон (который был выбран символом пифагорейцев и взят за основу в проекте хорошо известной штаб-квартиры вооруженных сил[9 - Имеется в виду Пентагон – главное административное здание Министерства обороны США. – Прим. пер.]), шестиугольник (часть пчелиного улья и, как мы увидим далее, графена[10 - Слой атомов углерода, соединенных в гексагональную двумерную кристаллическую решетку. – Прим. пер.]), семиугольник (его можно найти на различных монетах), восьмиугольник (знаки обязательной остановки), девятиугольник… Этот ряд можно продолжать бесконечно: для каждого целого числа, начиная с трех, существует уникальный правильный многоугольник. В каждом случае количество вершин равно количеству сторон. Мы также можем рассматривать круг как предельный случай правильного многоугольника, где число сторон становится бесконечным.

Правильные многоугольники, в некотором интуитивном смысле, могут приобрести значение идеального воплощения плоскостных «атомов». Они могут служить как концептуальные атомы, из которых мы можем составлять более сложные построения порядка и симметрии.

Платоновы тела

Теперь перейдем от плоских фигур к объемным. Для максимального единообразия мы можем обобщать понятие правильного многогранника различными способами. Самый естественный из них, который оказывается наиболее плодотворным, ведет к платоновым телам. Мы говорим об объемных телах, грани которых являются правильными многоугольниками, все одинаковы и одинаково смыкаются в каждой вершине. Тогда вместо бесконечного ряда решений мы получим ровно пять тел!

Илл. 5. Пять платоновых тел – волшебных фигур

Пять платоновых тел – это:

• тетраэдр с четырьмя треугольными гранями и четырьмя вершинами, в каждой из которых сходится по три грани;

• октаэдр с восемью треугольными гранями и шестью вершинами, в каждой из которых сходится по четыре грани;

• икосаэдр с 20 треугольными гранями и 12 вершинами, в каждой из которых сходится по пять граней;

• Додекаэдр с 20 пятиугольными гранями и 20 вершинами, в каждой из которых сходится по три грани;

• Куб с шестью квадратными гранями и восемью вершинами, в каждой из которых сходится по три грани.

Существование этих пяти многогранников легко понять, без особых трудностей можно и сконструировать их модели. Но почему их только пять? (Или есть еще другие?)

Чтобы разобраться с этим вопросом, заметим, что вершины тетраэдра, октаэдра и икосаэдра объединяют три, четыре и пять треугольников, сходящихся вместе, и зададим вопрос: «Что произойдет, если мы продолжим и их будет шесть?» Тогда мы поймем, что шесть равносторонних треугольников, имеющих общую вершину, будут лежать на плоскости. Сколько ни повторяй этот плоский объект, он не позволит нам построить законченную фигуру, ограничивающую некий объем. Вместо этого фигура будет бесконечно распространяться по плоскости, как показано на илл. 6 (слева).

Илл. 6. Три бесконечных платоновы поверхности

На рисунке показаны только конечные их части. Эти три правильных замещения плоскости могут и должны восприниматься как родственные платоновым телам – их блудные братья, которые отправились в паломничество и никогда не вернутся.

Мы получим такие же результаты, если совместим четыре квадрата или три шестиугольника. Эти три правильные сечения на плоскости – достойные дополнения к платоновым телам. Далее мы увидим, как они воплощаются в жизнь в микромире (илл. 29).

Если мы попытаемся совместить более шести равносторонних треугольников, четырех квадратов или трех любых бо?льших правильных многоугольников, нам не хватит места и мы просто не сможем разместить вокруг вершины их суммарный угол. И поэтому пять платоновых тел – это все конечные правильные многогранники, которые могут существовать.

Знаменательно, что определенное конечное число – пять – появляется из соображений геометрической правильности и симметрии. Правильность и симметрия – это естественные и прекрасные вещи для размышления, но у них нет очевидной или прямой связи с определенными числами. Как мы увидим, Платон интерпретировал этот сложный случай их возникновения удивительно творческим образом.

Предыстория

Часто известным людям достается слава за открытия, сделанные другими. Это «эффект Матфея», обнаруженный социологом Робертом Мёртоном и основанный на строчках из Евангелия от Матфея:

Ибо каждому имеющему будет дано, и у него будет изобилие, а у неимеющего будет взято и то, что он имеет[11 - Евангелие от Матфея, 13:12. – Прим. пер.].

Так случилось и с платоновыми телами.

В музее Ашмолин в Оксфордском университете[12 - Музей искусства и археологии в Оксфорде. – Прим. пер.] можно увидеть стенд с пятью резными камнями, изготовленными примерно в 2000 г. до н. э. в Шотландии, которые кажутся реализациями пяти платоновых тел (хотя некоторые ученые и оспаривают это). По всей видимости, они использовались в какой-то игре с костями. Можно представить, как пещерные люди собирались вокруг общего костра и резались в «Подземелья и драконы» эпохи палеолита. Вполне возможно, что не Платон, а его современник Теэтет (417–369 гг. до н. э.) первым математически доказал, что это эти самые пять тел – единственные возможные правильные многогранники. Не ясно, в какой степени Платон вдохновил Теэтета или наоборот, или в воздухе античных Афин витало что-то такое, что вдохнули они оба. В любом случае платоновы тела получили свое название, потому что Платон оригинально использовал их в работе гения, одаренного творческим воображением, чтобы провидческим образом создать теорию физического мира.

Илл. 7. Доплатоновские изображения платоновых тел, которые, возможно, использовались в играх с костями около 2000 г. до н. э.

Заглянув в гораздо более далекое прошлое, мы понимаем, что некоторые простейшие создания биосферы, в том числе вирусы и диатомеи (не пары атомов, как можно было бы подумать из названия, а морские водоросли, которые часто отращивают вычурные панцири в виде платоновых тел), не только «открыли», но и буквально воплотили платоновы тела задолго до того, как на Земле появились первые люди. Вирус герпеса; вирус, который вызывает гепатит В; вирус иммунодефицита человека и вирусы многих других болезней имеют форму, напоминающую икосаэдр или додекаэдр. Они заключают свой генетический материал – ДНК или РНК – в белковые капсулы-экзоскелеты, которые определяют их внешние формы, как показано на цветной вклейке D. Капсулы маркированы цветом таким образом, что одинаковые цвета обозначают одинаковые «строительные блоки». В глаза бросается характерное для додекаэдра соединение трех пятиугольников. Но если провести прямые линии через центры синих областей, то мы увидим икосаэдр.

Более сложные микроскопические существа, в том числе радиолярии, которые любил изображать Эрнст Геккель в своей великолепной книге «Красота форм в природе», также воплощают в жизнь платоновы тела. На илл. 8 мы видим замысловатый кремниевый экзоскелет этих одноклеточных организмов. Радиолярии – древняя форма жизни, которую обнаруживают в самых ранних окаменелостях. Ими полны океаны и сегодня. Каждое из пяти платоновых тел воплощается в некотором количестве биологических видов живых организмов. В названиях некоторых из них даже закрепилась их форма, в том числе Circoporus octahedrus, Circogonia icosahedra и Circorrhegma dodecahedra.

Вдохновляющая идея Евклида

«Начала» Евклида являются величайшим учебником всех времен, и другие книги им в этом не чета. Эта книга принесла в геометрию систему и строгость. Если посмотреть более широко, она ввела в область идей – путем практического применения – метод анализа и синтеза.

Илл. 8. Радиолярии становятся видимыми под объективом самого простого микроскопа. Их экзоскелеты часто демонстрируют симметрию платоновых тел.

Анализ и Синтез являются предпочтительной формулировкой «редукционизма» для Исаака Ньютона и для нас тоже. Вот что говорит Ньютон:

Путем такого анализа мы можем переходить от соединений к ингредиентам, от движений – к силам, их производящим, и вообще от действий – к их причинам, от частных причин – к более общим, пока аргумент не закончится наиболее общей причиной. Таков метод анализа, синтез же предполагает причины открытыми и установленными в качестве принципов; он состоит в объяснении при помощи принципов явлений, происходящих от них, и доказательстве объяснений[13 - Цит. по: Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. – М.-Л.: Госиздат, 1927. – С. 306.].

Эту стратегию можно сравнить с подходом Евклида к геометрии, где он начинает с простых, интуитивно понятных аксиом, чтобы потом вывести из них более сложные и удивительные следствия. Великие «Математические начала» Ньютона, основополагающий документ современной математической физики, тоже следуют показательному стилю Евклида, пошагово переходя от аксиом при помощи логических построений к более значительным результатам.

Важно подчеркнуть, что аксиомы (или законы физики) не говорят вам, что с ними делать. Собирая их вместе без всякой цели, легко создать большое количество ничего не значащих фактов, о которых скоро забудут. Это как пьеса или музыкальный отрывок, которые бредут как неприкаянные и не приходят никуда. Как обнаружили те, кто пытался приспособить искусственный интеллект для решения творческих математических задач, самое трудное в этом деле – определить цели. Имея в голове стоящую цель, становится легче найти средства, чтобы достичь ее. Я люблю печенье с предсказаниями, и раз мне попалось самое удачное на свете печенье: изречение, которое я в нем нашел, великолепно подытоживает все сказанное:
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6