Оценить:
 Рейтинг: 4.67

Красота физики. Постигая устройство природы

Год написания книги
2015
Теги
<< 1 2 3 4 5 6 >>
На страницу:
4 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Доказательство Эйнштейна (?)

В своих автобиографических записках Эйнштейн вспоминает:

Помню, дядя рассказал мне о теореме Пифагора еще до того, как священная книжка по геометрии попала мне в руки. В результате многочисленных усилий мне удалось добиться успеха в «доказательстве» этой теоремы на основании подобия треугольников; таким образом мне казалось «очевидным», что соотношение сторон в прямоугольном треугольнике должно определяться одним из острых углов.

В этой записи действительно недостаточно деталей, чтобы с полной достоверностью реконструировать доказательство Эйнштейна, но ниже, на илл. 2, приведено мое наилучшее предположение. Оно претендует на правильность, поскольку является самым простым и самым красивым доказательством теоремы Пифагора. В частности, это доказательство делает совершенно понятным, почему именно квадраты сторон задействованы в этой теореме.

Илл. 2. Вероятная реконструкция доказательства Эйнштейна из автобиографических записок

Отполированная драгоценность

Мы начинаем с наблюдения о том, что прямоугольные треугольники, которые имеют общий угол ?, являются подобными друг другу в строгом смысле, т. е. вы можете перейти от одного к другому с помощью изменения масштаба (увеличения или сжатия). Кроме того, если мы изменим длину стороны треугольника, умножив ее на какой-либо коэффициент, то его площадь изменится в количество раз, равное квадрату этого коэффициента. Теперь рассмотрим три прямоугольных треугольника, показанных на илл. 2: всю фигуру и два треугольника, которые она включает в себя. Каждый из этих треугольников содержит угол ?, следовательно, они подобны. Вследствие этого их площади пропорциональны a?, b?, c? в порядке от самого маленького к самому большому. Но так как два меньших треугольника составляют большой треугольник, соответствующие площади также должны суммироваться, поэтому

a? + b? = c?.

И теорема Пифагора тут как тут!

Прекрасная насмешка

Прекрасная насмешка состоит в том, что теорема Пифагора может быть использована, чтобы подорвать его доктрину о том, что число есть сущность всех вещей. Такой возмутительный вывод следует из одного открытия пифагорейской школы, которое приписывали не Пифагору, а его ученику Гиппаcу. Вскоре после того, как он сделал это открытие, Гиппаc утонул в море. Не известно, была ли его смерть вызвана волей богов или волей пифагорейцев. Доказательство Гиппаcа очень хорошо продумано, но не является слишком сложным. Давайте с ним ознакомимся.

Рассмотрим равнобедренные прямоугольные треугольники, у которых два катета равны, т. е. a = b. Теорема Пифагора гласит, что 2 ? a? = c?.

Теперь предположим, что длины сторон а и с выражаются целыми числами. Если все вещи – числа, то лучше бы это было так! Но выясняется, что это невозможно. Если и а, и с – четные числа, мы можем рассмотреть подобный треугольник, составляющий половину от размера первоначальной фигуры. Мы можем продолжать уменьшать его каждый раз в два раза, пока не получим треугольник, где по крайней мере одно из значений (а или с) является нечетным.

Но какой бы выбор мы ни сделали, мы быстро достигнем противоречия. Вначале давайте предположим, что с выражается нечетным числом. Тогда c? также является нечетным. Но 2 ? a? явно дает четное число, поскольку содержит множитель 2. Таким образом, у нас не получается равенства 2 ? a? = c?, как гласит теорема Пифагора. Противоречие!

Предположим тогда, что с выражается четным числом, – скажем, с = 2 ? p. Тогда c? = 4 ? p?. Теорема Пифагора говорит нам (после того, как мы разделим обе части равенства на 2), что a? = 2 ? p?. Следовательно, а не может выражаться нечетным числом – по тем же причинам, что и выше. Противоречие!

Таким образом, все-таки не все вещи могут быть выражены целыми числами. Не может существовать никакого атома длины, из которого могут быть выведены все возможные длины как произведение целого числа на этот самый атом.

Кажется, пифагорейцы не представляли себе, что можно прийти к другому умозаключению и сохранить неприкосновенной идею о том, что все вещи есть числа. В конце концов, можно представить себе мир, где все пространство состоит из множества одинаковых неделимых частей. Например, мои друзья Эд Фредкин и Стивен Вольфрам продвигают модели нашего мира, основанные на клеточных автоматах, которые обладают именно этим свойством. И монитор вашего компьютера, изображение на котором состоит из точек света, называющихся пикселями, доказывает, что такой мир может выглядеть достаточно реалистично! Если рассуждать логически, справедливо было бы прийти к выводу, что в таком мире невозможно построить правильный равнобедренный прямоугольный треугольник. В нем обязательно что-то будет немного не так. Или прямой угол будет немного отклоняться от 90°, или катеты будут не совсем равны или – как на экране монитора – стороны такого треугольника будут не совсем прямыми.

Но такой подход не был близок греческим математикам. Они-то рассматривали геометрию в наиболее соблазнительной, непрерывной форме, где сосуществуют в точности прямые углы и точное равенство сторон. (Этот подход также оказался самым плодотворным для физиков, как мы увидим на примере Ньютона.) Чтобы утвердить такую точку зрения, грекам пришлось установить приоритет геометрии над арифметикой, потому что – как мы уже видели – целые числа не могут адекватно описать даже очень простую геометрическую фигуру. Таким образом, они отказались от буквы доктрины о том, что все вещи есть числа, но не от ее духа.

Мысль и объект

Истинная сущность кредо Пифагора – это не буквальное утверждение того, что мир должен воплощать целые числа, но оптимистичное убеждение в том, что мир должен воплощать красивые понятия.

Урок, за который Гиппас заплатил жизнью, состоит в том, что мы должны стремиться узнать у Природы, в чем состоят ее правила. В этом предприятии скромность является необходимой чертой. Геометрия не менее красива, чем арифметика. На самом деле она более естественно подходит для нашего мозга, который во многом нацелен на обработку визуальных образов, и большинство людей предпочитают именно ее. И геометрия не содержит в себе меньше идей, меньше чистой работы ума, чем арифметика. Большая часть древнегреческой математики, систематизированная в «Началах» Евклида, стремилась доказать именно то, что геометрия – это логическая система.

Продолжив нашу медитацию, мы обнаружим, что Природа изобретательна в своем языке. Она поражает наше воображение новыми видами чисел, новыми видами геометрических форм – и даже, в квантовом мире, новыми видами логики.

Пифагор II: Число и гармония

Сущность всех струнных инструментов, будь это древняя лира или современная гитара, виолончель или пианино, одинакова: они производят звук с помощью движения струн. Качество звука, или тембр, зависит от множества сложных факторов, в том числе от материала струн, формы поверхности деки – «звукоотражателя», вибрирующего согласованно со струной, и способа извлечения звука из струны: щипком, проведением смычка или ударом. Но для всех инструментов существует основной тон или строй, который мы, слушая игру на них, распознаем как ноты. Пифагор – настоящий Пифагор – открыл, что музыкальный строй подчиняется двум удивительным правилам. Эти правила имеют прямую связь с числами, свойствами физического мира и нашим чувством гармонии (которая является одним из ликов красоты).

На следующем рисунке, который не принадлежит кисти Рафаэля, изображен Пифагор, проводящий эксперименты по гармонии.

Илл. 3. Средневековая европейская гравюра, изображающая Пифагора за изучением музыкальной гармонии.

Из рисунка мы можем сделать вывод, что Пифагор слушает, как изменяется звук его инструмента, когда он меняет два различных параметра. Зажимая струну в разных точках, он может варьировать рабочую длину вибрирующей части, а изменяя груз, который натягивает струну, он может менять ее натяжение

Гармония, число и длина: поразительная связь

Первое правило Пифагора устанавливает соотношение между длиной вибрирующей струны и нашим восприятием ее тона. Оно гласит, что две одинаковые струны с одним и тем же натяжением издают вместе приятный звук, когда длины струн пропорциональны небольшим целым числам. Так, например, когда соотношение длин составляет 1:2, тональности формируют октаву. При соотношении 2:3 мы слышим доминантовую квинту, а при 3:4 – мажорную кварту. В музыкальном нотном письме (в регистре «до») это соотносится с тем, что одна за другой проигрываются две ноты до различных диапазонов, до и соль или до и фа соответственно. Такие комбинации тональностей привлекательны для людей. Они стали основой классической и большей части народной музыки, а также поп- и рок-музыки.

Применяя правило Пифагора, мы должны понимать под длиной струны ее рабочую длину, т. е. длину той части струны, которая в действительности вибрирует. Зажимая струну и таким образом создавая мертвую зону, мы можем поменять тональность. Гитаристы и виолончелисты пользуются этой возможностью, зажимая струны пальцами левой руки. Делая это, они, зная об этом или нет, призывают к жизни Пифагора. На рисунке мы видим, как Пифагор подбирает рабочую длину струны, используя заостренные зажимы, которые нужны для того, чтобы добиться точности в измерениях. Когда звуки звучат вместе хорошо, мы говорим, что они находятся в гармонии или созвучны. Таким образом, Пифагор открыл, что та гармония звуков, которую мы ощущаем, отражает отношения, которые имеют место, казалось бы, в совершенно другом мире – в мире чисел.

Гармония, число и вес: поразительная связь

Второе правило Пифагора связано с натяжением струны. Нужное натяжение можно получить управляемым и хорошо измеряемым способом, отягощая струну грузами различного веса, как это показано на илл. 6. Здесь результат еще более интересен. Звуки находятся в гармонии, если натяжение пропорционально квадратам небольших целых чисел. Более сильное натяжение соответствует более высокой тональности. Так, соотношение натяжений 1:4 создает октаву и т. д. Когда музыканты настраивают свои инструменты перед выступлением, подтягивая или ослабляя струны, поворачивая колки, Пифагор снова возвращается.

Эта вторая закономерность впечатляет куда больше, чем первая, в качестве свидетельства того, что ощущения являются скрытыми числами. Она лучше спрятана, потому что числа должны быть обработаны – если быть точным, возведены в квадрат – до того, как закономерность станет очевидной. Соответственно потрясение от открытия куда сильнее. Также эта закономерность связана с весом предметов. А вес более безошибочно, чем длина, приводит нас к вещам материального мира.

Открытия и мировоззрение

Вот мы и обсудили три главных открытия Пифагора: его теорему о прямоугольных треугольниках и два правила музыкального созвучия.

Все вместе они связывают форму, размер, вес и гармонию общей нитью, которой оказываются числа.

Для пифагорейцев этого триединства открытий было более чем достаточно, чтобы склониться к мистическому мировоззрению. Вибрация струн – это источник музыкального звука. Она представляет собой не что иное, как периодическое движение, т. е. движение, которое повторяется через определенные интервалы времени. Мы также видим, что Солнце и планеты совершают периодические движения по небу, и делаем логический вывод об их периодических движениях в космосе. Таким образом, они тоже должны производить звуки. Эти звуки формируют Музыку сфер, музыку, которая наполняет космос.

Пифагор увлекался пением. Он также заявлял, что действительно слышал Музыку сфер. Некоторые современные ученые строят предположения о том, что исторический Пифагор страдал от тиннитуса, т. е. от шума в ушах. Конечно, с настоящим Пифагором не происходило ничего подобного.

В любом случае более широкий смысл этих открытий состоит в том, что все есть числа и что числа поддерживают гармонию. Пифагорейцы, помешанные на математике, жили в мире, наполненном гармонией.

Послание – в частоте

Я полагаю, что музыкальные правила Пифагора заслуживают того, чтобы считаться первыми количественными законами природы, когда-либо открытыми человеком. (Астрономические закономерности, начиная с регулярной смены дня и ночи, были, конечно, замечены намного раньше. Составление календарей и гороскопов, использование математики для предсказания или воспроизведения имевшего места в прошлом положения Солнца, Луны или планет являлись особыми практическими искусствами задолго до рождения Пифагора. Но эмпирические наблюдения за отдельными объектами весьма отличаются от изучения общих законов Природы.)

Странно поэтому осознавать, что мы до сих пор не понимаем до конца, почему они верны. Сегодня мы намного лучше понимаем физические процессы, связанные с получением, передачей и восприятием звука, но связь между этими знаниями и ощущением «нот, которые звучат хорошо вместе» пока что ускользает от нас. Думаю, по поводу этого существует большое количество многообещающих идей, которые близки к центральному понятию нашей медитации, поскольку (если они верны) проливают свет на важный аспект происхождения нашего чувства красоты.

Наше описание того, как и почему работают правила Пифагора, состоит из трех частей. В первой части звук колеблющейся струны достигает барабанной перепонки в нашем ухе. Во второй – звук, достигший барабанной перепонки, превращается в первичные нервные импульсы. В третьей – первичные нервные импульсы приводят слушателя к ощущению гармонии.

Колебания струны проходят несколько трансформаций, прежде чем достигают нашего мозга как послание. Они воздействуют на окружающий воздух напрямую, просто толкая его. Тем не менее само по себе дрожание отдельной струны достаточно слабое. На практике у музыкального инструмента есть звукоотражающая поверхность – дека, которая в ответ на колебания струны сама вибрирует гораздо сильнее. Движение деки толкает окружающий воздух более чувствительно.

Сотрясение воздуха вокруг струны или деки порождает свое собственное возмущение, которое становится нарастающим: звуковая волна распространяется во всех направлениях. Любая звуковая волна является повторяющимся циклом сжатия и разрежения. Воздух, колеблющийся в каждой точке пространства, оказывает давление на соседние участки, и они тоже начинают колебаться. В конце концов часть этой звуковой волны, пройдя сквозь ухо с его сложной геометрией, неизбежно достигает мембраны, которая называется барабанной перепонкой и находится на глубине нескольких сантиметров в слуховом проходе. Наша барабанная перепонка работает как антипод деки: теперь колебания воздуха вызывают механические движения, а не наоборот.

Колебания барабанной перепонки порождают дальнейшую реакцию, о которой мы сейчас расскажем. Но перед этим мы должны сделать одно простое наблюдение, которое тем не менее является фундаментальным. Может вызвать удивление, как в этот длинном ряду преобразований значимый сигнал, отражающий поведение струны, передается так далеко по цепочке. Дело здесь в том, что во всех этих трансформациях одно свойство сигнала остается неизменным. Число колебаний в единицу времени или, как мы говорим, частота остается одинаковой, независимо от того, была ли это вибрация струны, деки, воздуха или барабанной перепонки – или слуховых косточек, кохлеарной жидкости, базилярной мембраны или волосковых клеток, следующих далее по очереди. Поскольку во время каждой трансформации толчки и натяжения на предыдущей стадии вызывают сжатие и разрежение на следующей, в точном соответствии с изначальным сигналом, то, таким образом, различные виды колебаний оказываются синхронизованными или, как мы говорим, «одновременными». Вследствие этого мы можем ожидать и действительно увидим, что, если мы хотим, чтобы наше восприятие отражало свойства изначальных колебаний, полезно отслеживать частоту тех колебаний, которые в конце концов возникают в наших головах.

Таким образом, первый шаг к пониманию правил Пифагора – это перевод их на язык частот. Сегодня мы можем положиться на уравнения механики, которые позволяют вычислить, как меняется частота колебаний струны, если мы изменим ее длину или натяжение. Используя эти уравнения, мы находим, что частота уменьшается пропорционально длине и возрастает пропорционально квадрату натяжения. Следовательно, оба правила Пифагора, переведенные на язык частот, передают одно и то же простое утверждение. Они гласят, что ноты звучат хорошо вместе, если их частоты соотносятся как небольшие целые числа.

Теория гармонии

Теперь вернемся к тому, что происходит со звуком на второй стадии. Барабанная перепонка крепится к трем маленьким слуховым косточкам, которые, в свою очередь, прикреплены к мембранному «овальному окну», открывающемуся в спиралевидную улитку, которая является критически важным для слуха органом, играющим примерно такую же роль, как глаз для зрения. Она наполнена жидкостью, приходящей в движение от вибрации овального окна. В эту жидкость погружена длинная базилярная мембрана постепенно уменьшающейся толщины, которая, извиваясь, проходит через завитки спиралевидной улитки. Параллельно базилярной мембране пролегает кортиев орган. Именно в нем сигнал от струны наконец – после множества трансформаций – переводится в нервные импульсы. Детальное описание этих преобразований очень сложно и интересует только специалистов, но в целом картина проста и не зависит от этих деталей. Она состоит в том, что частота первоначальных колебаний переводится в серию возбуждений нейронов, имеющую ту же частоту.

Один важный аспект этого перехода особенно красив и соответствует духу учения Пифагора; в 1961 г. Дьёрдь фон Бекеши получил за него Нобелевскую премию. Поскольку толщина базилярной мембраны уменьшается вдоль длинной оси, различные ее части стремятся колебаться в разном темпе. У более широких частей инерция больше, поэтому они вибрируют медленнее, на более низких частотах, в то время как более узкие части вибрируют на более высоких частотах. (Из-за этого эффекта существует разница в общем тоне типично мужских и типично женских голосов. Во время пубертатного периода мужские голосовые связки утолщаются, что приводит к более низким частотам вибрации и более глубокому голосу.) Итак, после того, как звук после множества преобразований приводит окружающую жидкость в движение, реакция базилярной мембраны оказывается различной в разных местах по ее длине. Низкочастотные звуки приведут более широкие части в интенсивное движение, в то время как высокочастотные звуки затронут более узкие части[7 - Здесь автор говорит о вынужденных колебаниях, частота которых близка к собственной частоте мембраны в данной точке. – Прим. ред.]. Таким образом, информация о частоте перекодируется в информацию о местоположении.
<< 1 2 3 4 5 6 >>
На страницу:
4 из 6