Оценить:
 Рейтинг: 4.6

Всемирный разум

Серия
Год написания книги
2011
Теги
<< 1 2 3 4 5 6 >>
На страницу:
5 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля
Как действует оперативная память мозга

Нейроны способны временно хранить поступающую информацию, изменяя силу синаптических связей[48 - Синапс – область контакта нервных клеток между собой или с иннервируемыми ими тканями. – Подробнее см. гл. 5. – Прим. пер.]. Сила последних зависит, в частности, от наличия в синаптической области различных химических веществ и потому может варьироваться в определенном диапазоне. Изменение силы синаптических связей в пучке нейронов равнозначно репрезентации событий во внешнем мире. В некоторых случаях влияние на структуру подобных связей могут оказывать и сигналы, поступающие из других областей мозга. Скажем, кто-то из друзей называет вам по памяти номер телефона: «555-4347». Вы беретесь за трубку своего мобильного, повторяя про себя: «555-4347, 555-4347». Ваш внутренний голос воспроизводит для вас звуковой сигнал, посредством коего вы и узнали этот номер, – и синаптические связи обновляются. Такова одна из схем, которой можно отобразить работу краткосрочной – или оперативной – памяти. Обратная связь подобного рода (feedback structure) служит созданию так называемой рекуррентной сети (recurrent net).

В рекуррентной (с возвратным сигналом) сети информация движется как снизу вверх, так и обратно. Наше ухо улавливает звук, после чего соответствующий сигнал поступает в определенную группу нейронов в слуховой зоне коры головного мозга. Однако туда же поступает сигнал и из другой части мозга – той, которая обрабатывает информацию на более высоком уровне, абстрагируя ее и усиливая значимость поступивших данных. То есть начинает информационный цикл восходящий поток данных (из внешнего мира), однако осуществляет их последующую обработку нисходящий – управляемый высшими отделами мозга. Вы можете повторять про себя набираемый номер до тех пор, пока вам не ответят на телефонный вызов. Аналогичным образом вы запоминаете начало фразы, в то время как говорящий уже добирается до ее конца.

Конечно, такое объяснение работы оперативной памяти мозга является упрощенным, однако оно дает отправную точку для понимания механизма майндридинга. Используя имплантированное устройство, которое воспринимало бы сигнал, проходящий по нервным путям, нам нужно сначала уловить нисходящий поток данных, а затем – с помощью более или менее сложного алгоритма – дешифровать этот сигнал. Причем, если данные восходящего потока относительно конкретны (фонетическая оболочка слова), то нисходящего – относительно абстрактны (смысловое ядро слова). Быстрые и довольно беспорядочные движения глаза дают информацию для первого из них, а устойчивые зрительные образы объектов обеспечиваются данными, поступающими по второму.

Казалось бы, так в наш мозг поступают только впечатления. Однако в действительности подобным же образом можно прочитать практически все, чем заполнено наше сознание: воспоминания, эмоции, концепции, внутренний диалог. Хотя все эти составляющие осознаваемого нами опыта не столь уж четко отграничены друг от друга. Подобно воспоминаниям и переживаниям, слова служат своего рода ярлыками, которые мы используем для классификации всего того, что есть в нашем сознании. Впрочем, существует и особый механизм, с помощью которого мозг обеспечивает «подъем» информации. В главе 5 мы в общем виде рассмотрим аргументацию Вернона Маунткастла (Vernon Mountcastle) и Джеффа Хокинса (Jeff Hawkins), полагающих, что существует некий универсальный алгоритм, поддерживающий восходящее направление любой ментальной операции. Как только мы сумеем изучить его, получим возможность считывать данные о соответствующей ментальной активности и влиять на характер протекающих процессов – посредством тех имплантов, в которых будет применяться особый, декодирующий, алгоритм, призванный заменять исходный.

Бог со словарем из двух слов

Но прежде, чем начинать рассмотрение этого магического, как может показаться, алгоритма, который послужит нам в будущем, важно понять алгоритмы, действующие в настоящем. Описанный выше шлем, использующий методику энцефалографии (ЕЭГ), способен «детектировать» одно и только одно событие, происходящее в головном мозге: волну P300. И вы точно знаете, что ваша зрительная система находится в состоянии алертности. Да, именно так. Полагаясь на эти простые исходные данные, вы можете делать всякие умные вещи. Но прочитать (не говоря уже о дальнейшей дешифровке) информацию, связанную с вашими впечатлениями и воспоминаниями, с помощью данной методики уже не получится.

Не получится и с помощью fMRI, хотя функциональное магнитно-резонансное сканирование (ФМРС) проникает глубже, чем электроэнцефалография. В отличие от ЭЭГ, оно «видит» схемы нейронной активности, поэтому с его помощью можно, в определенной мере, судить, о чем думает мозг. В уже упомянутой научной работе «Как читать скрытые намерения человека в его мозге» авторы пишут, что данная методика позволила отслеживать, как испытуемые, которым показывали два числа, выбирали определенную арифметическую операцию – сложение или вычитание. Разумеется, отсюда еще очень и очень далеко до алгоритма майндридинга. Тем не менее, это поможет нам вплотную подойти к сути дела.

Прежде всего, постараемся внимательно разобраться с инженерными деталями. Один из авторов этой научной работы – нейробиолог Джон-Дилан Хайнс (John-Dylan Haynes) – и его сотрудники для исследования мозговой активности испытуемых применили оборудование MRI. Сканеры MRI довольно громоздки (соразмерны уличной кабинке), очень дорогостоящи (от 1 млн долларов и выше) и представляют собой цилиндрический магнит – достаточно большой, чтобы охватить тело человека. Магнит находится в «рубашке» – емкости, наполненной жидким гелием, – и охлаждается в той степени, которая требуется для получения эффекта сверхпроводимости. Как следствие, создается необычайно мощное магнитное поле. Известно, что сканеры MRI способны раскачивать находящиеся в том же помещении тяжелые резервуары с кислородом. Столь сильное поле позволяет определенным образом «выстраивать» некоторые молекулы в человеческом теле – что и дает возможность ясно видеть различные внутренние структуры организма.

Сканеры MRI отображают мягкие ткани организма так же, как рентгеновские лучи – костную ткань. Они позволяют получать не только детализированные мгновенные снимки отдельных частей тела (snapshots of body parts), но и видеозапись, отображающую активность мозга (movies of brain activity). Когда испытуемый о чем-то размышляет, некоторым группам нейронов требуется больше кислорода. Фиксируя изменения в молекулярном состоянии гемоглобина – вещества, отвечающего за доставку кислорода к тканям мозга, – сканер MRI показывает, какая часть мозга активна в определенный момент времени. Эта методика называется функциональным магнитно-резонансным сканированием (functional MRI) и для краткости обозначается аббревиатурой fMRI.

Ее и применяли Хайнс и его команда. Испытуемых помещали в кабинку с магнитным полем и охлаждающей оболочкой (всегда поодиночке, разумеется) и показывали слайд, надпись на котором предлагала принять определенное решение – сложить два появляющихся перед глазами числа или вычесть одно из другого. Примерно так, как показано на картинке ниже.

Испытуемым давали несколько секунд на то, чтобы подумать и тем самым передать информацию о своем решении в память головного мозга. Затем два числа появлялись на втором слайде.

Через несколько секунд возникал третий. На нем были показаны четыре цифры: результаты двух операций (сложения и вычитания) – то есть сумма и разность чисел с первого слайда, а также еще два неверных ответа.

Подопытный сообщал исследователям, какое из чисел он получил, и таким образом обнаруживалось, каким был выбор: складывать пару чисел на первом слайде или вычитать одно из другого.

В течение того точно определенного отрезка времени, когда подопытные передавали свои решения в память, сканер MRI тоже делал свою работу – отслеживал состояние префронтальной области коры головного мозга. Эта область считается самой молодой, сформировавшейся в процессе эволюции человека позже всех прочих (она отвечает за абстрактное мышление). Каждые три секунды магнитно-резонансный сканер «фотографировал» ее, создавая ее объемное изображение (3D picture). Разрешение «снимков» получалось не очень высоким, поскольку создатели fMRI пожертвовали резкостью в пользу скорости, и экспериментаторам приходится довольствоваться изображениями минимального размера. Зато ученые, изучая те или иные схемы (patterns) активности мозга, могут наблюдать за ней в широких пределах.

Однако человеческий мозг с его квинтильонами синапсов в любое мгновение может сделать гораздо больше, чем принять одно решение о том, сложить ли два числа или вычесть одно из другого. Разбираемая нами научная работа не объясняет, благодаря чему исследователи получили право заявить: «Отмеченная в области префронтальной коры головного мозга активность означает, что подопытный принял решение сложить два числа». Точнее, объясняет, но имплицитным образом – предполагая, что читатель знаком со статистическими методами, составляющими основу данного эксперимента. И я почувствовал: чтобы продвинуться далее, мне нужно получить докторскую степень в области математики либо приобрести глубокие знания в сфере магнитно-ядерного резонанса.

И надо же было такому случиться, что подобными знаниями как раз обладала Регина Нуццо, работавшая по программе специального гранта, выделенного на анализ данных, получаемых при использовании fMRI головного мозга человека. Вот почему я постоянно посылал ей текстовые сообщения. Она заглянула в эту статью и объяснила, что тестирование проводилось снова и снова. У подопытных могло возникать множество случайных, не относящихся к делу мыслей, но одна из них в процессе сканирования присутствовала и проявляла себя постоянно – о том, какое решение принять: складывать или вычитать. Раз за разом отсеивая информационный шум, ученые смогли выделить именно ту форму нейроактивности, которая соответствовала принятию данного решения. После этого все ненужное просто отфильтровывалось.

Регина также пояснила, что ученые проводят анализ после сбора всех данных. Во время же эксперимента они не могут воззвать к подопытным: «О, мы видим, что вы намерены произвести сложение. Отлично, так и делайте!» Напротив, экспериментаторы прогоняют все тесты за один раз в надежде, что по окончании сканирования выявят закономерность, которую и требуется установить. Как только повторяемость данных приводит к ней, исследователи анализируют полученные результаты, сверяя их с новыми порциями информации. Выявляются ли при этом паттерны, относящиеся к решениям? Ученые обнаружили, что да, выявляются – в среднем, с точностью до 71 %.

На этой стадии эксперимента исследователи вновь помещают испытуемых в кабинку для сканирования и в режиме реального времени считывают их решения «Сложить» / «Вычесть» с точностью в 71 %. Иными словами, ученые могут считать, что в их руках – настоящая машина для чтения сознания.

Увы, действующая с определенными ограничениями. 71 % корректных показаний – это хороший результат, но до совершенства еще далеко. Хотя оное – не более чем иллюзия: одни и те же мысли в нашем сознании могут активировать нейронные связи (в структурном смысле), но последние всякий раз будут создавать не вполне совпадающие паттерны. Этот факт говорит не в пользу рассмотренных выше установленных алгоритмов: данные схемы интерпретации данных не учитывают, что несколько отличающиеся друг от друга паттерны мозговой активности могут иметь один и тот же ключевой смысл. Представьте: вы – на вечеринке и дважды повторили одну и ту же фразу. Слова одни и те же, но прозвучать они могут по-разному – из-за, так сказать, уровня звука или взрыва хохота, донесшегося из угла помещения.

И даже если результаты эксперимента будут абсолютно безупречными, данная методика позволит распознавать только две мысли: «сложить» и «вычесть». Не «умножить» и не «разделить». И, тем более, не «чек запаздывает на неделю», или «Эмили весь день была всем недовольна», или «мне нужно в туалет». В сущности, эксперимент имеет еще более жесткие ограничения, чем уже рассмотренные. Активность нейронов при сложении чисел внутри тесной и шумящей машины для магнитно-резонансного сканирования может заметно отличаться от, казалось бы, той же активности, но проявляющейся тогда, когда человек, подбивая баланс, что-то складывает, держа в руках собственную чековую книжку. «Сложить» в процессе эксперимента в действительности означает: «Пусть подопытный произведет операцию сложения во время тестирования и нахождения внутри кабинки магнитно-резонансного сканера».

В этом смысле мало что объясняет понимание того, каким образом «сложить» репрезентируется в мозге или как интенция проявляется во внутреннем опыте. Связано ли сложение чисел с молча, про себя произносимым словом или же с фонемой, которую оживляет сигнал обратной связи, имеющий отношение к оперативной памяти? Может быть, возникает невербальный образ – интуитивный, но основанный на «пирамиде» прежних данных? Или же мы имеем дело со зрительным образом знаковой природы? Или пробуждаются детские воспоминания о первых уроках арифметики? Или мы должны прийти к комбинации всего этого?

Однако заметьте: мы добиваемся большего, чем при использовании шлема для майндридинга. Магнитно-резонансное сканирование действительно позволяет наблюдать за нейроактивностью, хотя разрешение картинки остается низким, и мы вынуждены интерпретировать данные семантически. Зато можем уверенно заявить: данная схема, отображающая активность нейронных связей, при данных условиях должна означать только одно – «сложить».

В этом смысле мы действительно имеем устройство для чтения сознания. Только представьте себе: вы молча лежите в темной трубе сканера, по секрету от всех принимаете решение «сложить» – и точно знаете, что машина узнает об этом. Похоже на молитву, обращенную к Богу, хотя у него вместо крови – жидкий гелий, вместо духа – тысячи линейных кодов, а словарь состоит всего лишь из двух слов. Вот что нам может позволить fMRI. Это все равно, как если бы удалось утащить 1 доллар из Форта Нокс. Замечательно, что вы пробрались внутрь и кое-что вынесли наружу. Но вот касательно всего скрываемого человеческим сознанием богатства… До него еще далеко.

Черные ящики

В методологии Хайнса мозг – это черный ящик, для которого характерно то, что паттерн X может изменяться под воздействием ментальной активности, равнозначной фактору Y. Вы не знаете, почему некий паттерн, соответствующий определенной активности мозга, значит именно то, что значит, – вы просто принимаете это значение к сведению. И ничего другого методика распознавания многовариантных паттернов вам предложить не может.

Я бы назвал этот тип майндридинга «чтением сознания в черном ящике» (mindreading blackbox reading) или, для краткости, блэкбоксингом (blackboxing). Идея в том, что блэкбоксинг очень напоминает то, как вы узнаете кого-то по походке. Скажем, ваш друг Фрэнк ступает тяжело и припадает на пятку левой ноги. По его шагам вы всякий раз и узнаете, что идет именно Фрэнк. Однако ничто не говорит вам о том, почему он ходит подобным образом. Вам не известно ни о его спортивном прошлом, ни о неврологическом состоянии мускулов ног.

Заметьте: чтобы воспользоваться возможностями блэкбоксинга на деле, вы должны заранее знать, чего хотите. Например, вы намерены выявить паттерн нейронной активности или зафиксировать всплеск волны P300? В любом случае, вам необходимо знать, как проявятся и что будут означать эти явления в определенной ситуации. Это, по определению, предельно закрытая система. Машина знает, что один паттерн означает «сложить», другой – «вычесть». Но если находящийся в сканере подопытный решит подумать «умножить» – все потеряно, эксперимент провален.

Все это накладывает на майндридинг жесткие ограничения. Если сформирован набор предустановленных паттернов ментальной активности, коммуникация какого объема может осуществляться на этой основе? Очевидно, что максимум в данном смысле – это система наподобие азбуки Морзе. У нас уже есть два примера: алфавит и выбор «сложить» / «вычесть». Неслучайно ограниченна и методика Хайнса – какой бы заманчивой и основательной она ни казалась. Методология, в основе которой лежит поиск соответствия определенным паттернам, по самой своей природе неспособна ничего рассказать о личном опыте осознания, который переживает человек, ставший объектом эксперимента. Наши мысли, чувства, впечатления, желания – все это остается за пределами понимания ученых.

Мы подошли к критически важному пункту. Компьютеры, обладая современным уровнем возможностей, могут соотносить паттерн нейроактивности X со схемой поведения Y. Как мы увидим в главе 6, сегодня существуют программы, моделирующие информационный поток в мозге. Благодаря этому становится возможным предугадывать, что именно последний пытается сделать. Компьютеры достаточно хорошо выявляют простые интенции человека, однако ни одна машина – даже в отдаленной перспективе – не способна понимать наши мысли, мотивы, фантазии и надежды.

На это способны только два устройства. И одно из них – другой человеческий мозг. Если между одним мозгом и другим, подобно corpus callosum, возникнет электронный мост с достаточной пропускной способностью, то воспринимающий (благодаря обучению и практическому опыту) сможет пробиться через хаос чужих мыслей – научившись понимать их ясный смысл так же, как учатся понимать иностранный язык. Именно так я и постигал язык жестов – совершая ошибки и нащупывая свой путь. По предположению Пола Черчланда, наступит время, когда два человеческих мозга, возможно, научатся действовать совместно столь же слаженно, как два полушария одного.

Другое устройство, способное решить данную задачу, – подключенный непосредственно к мозгу «умный» компьютер. Несомненно, его «ум» будет принципиально отличаться от человеческого. Во-первых, потому, что не прошел начавшийся в африканской саванне путь эволюции. А во-вторых, он не содержит в себе ничего, что могло бы противодействовать рефлекторным механизмам, заставляющим человека сражаться или спасаться бегством (fi ght vs. fl ight refl exes), либо, наоборот, поддерживать сексуальное влечение или способствовать утолению голода. Такой компьютер никогда не станет умным «по-человечески». Однако, обладая определенным уровнем интеллекта и способностью к обучению, он будет, вероятно, обладать своего рода интуитивным пониманием человеческого мозга.

Есть немало теорий, объясняющих, каким образом будет достигнут этот уровень искусственного интеллекта, – и одну из них мы обсудим далее. В настоящий момент моя точка зрения такова: единственное устройство, способное действительно понимать сознание человека, – это другое сознание. И не имеет значения, какова его материальная основа – кремниевая или углеродная. Главное требование заключается в том, чтобы сознание было сознанием.

Узнавая друг друга

Я с боем прокладывал себе путь через ASL I, а затем – ASL II[49 - Усовершенствованный вариант амслена. – Прим. пер.]. Зима выдалась морозной, самой холодной изо всех пережитых Вашингтоном за многие годы. Пальто я с собой не взял, потому что последние 16 лет жил в Остине (штат Техас) и в Сан-Франциско. Всего одна зима, твердил я себе, а затем – домой. И продолжал обходиться без пальто. Выпал снег, и однажды ночью температура упала до 7 градусов по Фаренгейту (–12,6 по Цельсию. – Прим. пер.). Тогда я попытался утеплиться, одевшись так, чтобы слоев оказалось больше обычного.

Куда бы я ни шел, везде видел руки, трепещущие, как листья, – и знаки их полнились смыслом. Библиотека была построена таким образом, что, находясь на первом ее этаже, вы могли со всей возможной скоростью обмениваться знаками с кем-то, кто располагался на третьем – 50 футами выше. И если голоса способны пересекать все границы лишь со скоростью звука, то знакам жестового языка подвластна скорость света. Как-то в кафетерии профессор наглядно дала мне понять: ей достаточно лишь обвести взглядом помещение, чтобы составить законченное представление о том, как студенты общаются друг с другом между занятиями. Содержание любого разговора сидящих за столиками людей можно было понять исчерпывающим образом – примерно так же врач бросает взгляд на мониторы у койки больного и сразу же узнает все о его состоянии. «Все равно, что жить в аквариуме, как это уже вошло в поговорку. Все на виду, никаких секретов», – сказала она, посматривая по сторонам. Но я подумал о другом: как, должно быть, потрясающе, когда люди настолько знают друг друга. Как здорово, если ты владеешь всей информацией о других, а они – о тебе.

На обложке того номера журнала New Yorker, в котором публиковалась статья о Поле Черчланде, были помещены комиксы, показывавшие людей в вагоне подземки. Надпись в пузыре возле каждого символизировала мысли персонажа. Мужчина думал о «Касабланке». Две женщины смотрели друг на друга, и каждая из них хотела бы знать, не лесбиянка ли та, что сидит напротив. Другой мужчина глядел на священника и спрашивал себя, не гей ли тот. Последний раздумывал, не пойти ли сидящему напротив к черту. Женщина с ребенком поглядывала на слепого мужчину и представляла себе, как гуляет с ним по парку. Слепец думал, что кричащих детей нельзя пускать в метро. Глядя на эти комиксы, с некоторой иронией обнаруживаешь, что все персонажи вместе, как и каждый из них в отдельности, вызывают жалость и, отчасти, сочувствие. А если мы все станем способны знать друг о друге подобным же образом?

Однако в Галладетском университете я так и не смог полноценно участвовать в жизни местного сообщества – за исключением тех случаев, когда переводчики были свободны и помогали мне. Люди были добры ко мне и настроены дружелюбно, но сам я в свободном общении мог сделать не слишком много. В сущности, все, что я мог сказать, сводилось к искаженным вопросам: «Как вы?» (при этом обычно не понимал, что мне отвечают) и «Как вас зовут?» (как правило, приходилось несколько раз просить повторить имя). Возможно, я недооцениваю полученные знания, однако пропасть между тем, что люди говорили мне, и тем, что в разговоре с ними мог уловить я, была огромной.

Я вел курс совместно с научным сотрудником университета, глухим писателем Джошем Свиллером (Josh Swiller). Мы работали без устали – читали лекции и выставляли оценки студентам. Понимать друг друга во время занятий нам героически помогали два переводчика. Студенты отличались ясным умом и писали отличные работы. Возникали у нас и живые дискуссии, разворачивавшиеся прямо в классе. Мне не раз случалось беседовать с учащимися, используя комбинацию ломаного амслена и чтения по губам. Помню, как-то состоялась чудесная беседа с одним студентом, во время которой мы по очереди набирали свои реплики на клавиатуре лэптопа – одного на двоих. И все же, все же… Я учил их, но все время чувствовал, что обращаюсь к ним, словно глядя через закопченное стекло: никогда не знал, о чем действительно думают мои студенты.

Глава четвертая. Самый «интимный» интерфейс

Чувство соприкосновения. Его дает любой настоящий город, по которому идешь пешком, – никогда не замечали? Вы слегка касаетесь прохожих, а некоторые из спешащих навстречу задевают вас. А вот в Лос-Анджелесе вас никто не коснется. Мы все отгорожены друг от друга стеклом и металлом. Думаю, мы так тоскуем о прикосновениях, что готовы врезаться в другого лишь для того, чтобы что-то почувствовать.

    «Столкновение», 2004 г.

Когда у меня появились кохлеарные импланты, мне пришлось вновь учиться общению с людьми. И это было очень нелегко. Меня словно бы заставили жить в новом теле, к которому я еще не привык, и я снова чувствовал себя несмышленым подростком. Нужно было – с помощью врачей-специалистов – научиться справляться со вспышками раздражения. На вечеринках и прочих встречах с людьми я порой выглядел дураком, поскольку не все улавливал в речи других и мне было трудно поддерживать разговор. Во время любовных свиданий – и то приходилось преодолевать трудности общения… Но я все же выучился справляться с бесконечным потоком электронных фонем. Теперь предстояло научиться быть искренним и оставаться джентльменом перед судом окружающих, не признавая себя отверженным. Я должен был говорить с людьми так, чтобы меня услышали.

Однако это еще не все. Моя личная жизнь оставляла желать лучшего: она включала в себя немало несостоявшихся свиданий, а также романтические отношения, один раз длившиеся две недели, а второй – шесть месяцев. Мне было уже под 40, и я никогда не любил.

Одна из моих знакомых как-то рассказала, что в Винной долине[50 - Винной долиной или Винной страной называется знаменитая область виноделия в Калифорнии. – Прим. пер.] к северу от Сан-Франциско должен состояться недельный семинар, посвященный любви, сексуальности и интимным отношениям. По ее словам, там можно было бы многому научиться.

Я поинтересовался, что именно там будет.

Она ответила не слишком уклончиво, но так, что я был заинтригован: «Словами это не очень опишешь». Однако я насторожился. Харе Кришна, харе Кришна? Или сайентология?

Через несколько дней я упомянул об этом разговоре, беседуя с Джо Кирком (Joe Quirk). Он, как и я, тоже писал на научные темы. Выросли мы в одном городе, но встретились лишь спустя годы – когда оба поселились в Сан-Франциско. Джо как раз трудился над книгой под названием «Сперма исходит от мужчин, яйцеклетки пребывают у женщин». Мы читали рукописи друг друга, вместе ходили на вечеринки и толковали о философии на веранде, смотрящей во двор. Мы сдружились, Джо и я.

«А, знаю, – ответил он. – Я был на этом семинаре».

«Правда?» – спросил я.

<< 1 2 3 4 5 6 >>
На страницу:
5 из 6