Я думал, он скажет что-то вроде: «У них там свой культ» или «Не трать время». Однако вместо этого услышал: «Я никому не говорил, что не стоит туда идти».
Переваривая эту фразу, я решил уточнить: «То есть мне не ходить?»
«Я не говорил, что ты не должен идти. Ты сам должен разобраться в этом. А затем тебе придется решить, что ты идешь».
Против обыкновения, Джо говорил загадками. «Да что там происходит?» – снова спросил я.
«Ничего я тебе не скажу. Сам все поймешь».
Странное дело! Однако я верил, что Джо предупредил бы меня, если бы там творилось что-то сомнительное. Поэтому я записался на семинар.
Что можно сделать с помощью нанопроводников?
Общение людей подошло к той черте, за которой оно будет полностью пересмотрено. Скоро мы сможем извлекать заметно больше пользы от применения той технологии, благодаря которой миллионы сообщений будут отправляться и приниматься одновременно и без единой ошибки. Интерфейсом при взаимодействии с машинами будет служить обмен мыслительными сигналами. Мы станем узлами единой сверхсети, общаясь с окружающими посредством передачи мыслей. Та речь, которую мы знаем сегодня, может выйти из употребления.
Профессор Кевин Уорвик, проект «Киборг I», 2004 г.
Правда, Уорвик[51 - Иногда можно встретить и другой вариант транслитерации: Кевин Ворвик. – Прим. пер.] (Kevin Warwick) не предлагает никакого правдоподобного механизма для «обмена мыслительными сигналами» в качестве интерфейса для взаимодействия с машинами. Конечно, он совершенно прав в том, что информацию головному мозгу можно передавать электронным образом. Именно это и делают мои кохлеарные импланты. Я знаю, как это – слышать звуки своими собственными ушами, и я понимаю отличия в восприятии их посредством встроенных «электронных ушей». Теперь, когда я привык к последним, могу заявить: они дают мне практически те же ощущения, что и обычные органы слуха. По своему устройству и принципам работы системы друг от друга отличаются, но конечные результаты их действия очень похожи: в слуховой зоне коры мозга возбуждаются определенные группы нейронов, а в сознании возникает чувство понимания. Электронное слышание остается слышанием именно потому, что ничем иным оно быть не может.
Однако Уорвик имеет в виду отнюдь не ту информацию, которую дают нам органы чувств. Он говорит о коммуникации, а это совершенно другое дело. Для общения требуется куда больше входящей и исходящей информации, чем поступает в мозг через кохлеарный имплант. Кроме того, интерпретироваться данные должны на более высоком уровне ментальной деятельности. И кто в мире на это способен?
Я должен во всем этом разобраться. Мне показалась интересной одна идея, которую выдвинул Родольфо Линас, нейробиолог из университета Нью-Йорка[52 - Приводится по книге: Naam, Ramez. More Than Human, Broadway, 2005.]. От нее просто волосы дыбом встают. Линас предложил инженерам сделать из тысяч проводов такой тонкий кабель, чтобы его можно было ввести в бедренную артерию в районе паховой области, а затем по кровяному руслу провести к головному мозгу – как при ангиографии. Достигнув последнего, провода кабеля должны распределиться таким образом, чтобы их концы попали в капилляры. В итоге каждый провод сможет снимать возбуждение соответствующего нейрона, а также изменять оное, передавая ему электрические импульсы.
Возможно, вы не поверите, что в капиллярах имеется достаточно места, однако оно есть. На иллюстрации видно, что диаметр каждого проводка – менее одного микрона (миллионной доли метра), то есть существенно меньше, чем просвет самого капилляра. Сотрудники лаборатории, которой руководит Линас, показали, что, в принципе, сделать все можно. Они вводили платиновые нанопровода в капилляры выбранных в качестве лабораторных образцов тканей и регистрировали возбуждение прилежащих нейронов[53 - http://www.physorg.com/news143212011.html]. Заряд быстро распределялся, и теперь исследователи надеются получить такие провода, которые могли бы проводить электроток нужной силы[54 - NSF News. July 7, 2005. Прилагаются усилия к созданию таких нанопроводников, которые могли бы проводить ток большей силы: ученые Арканзасского университета сообщают, что в 2008 году удалось разработать нанопроводники с сердцевиной из золота в оболочке из окиси иридия. В этом же научном отчете говорится, что разработанные нанопроводники способны передавать ток вдвое большей силы, чем созданные в других университетах. Это позволит решить ключевую проблему, связанную с применением нанопроводов: рассеяние электрического заряда, передаваемого по столь тонким проводникам. Подробнее см. на сайте: http://www.nsf.gov/news.].
Фактически, эта технология уже существует. Медики могут вводить длинную тонкую трубку через бедренную артерию, направляя ее затем в головной мозг – чтобы сделать инъекцию антиракового препарата прямо в область опухоли. Мы говорим о микрокатетерах, диаметр которых значительно превышает толщину нанопроводов, составляя от 0,5 до 1 миллиметра[55 - http://www.asahi-intecc.com/medical/product/ivr_mc.html.]. Однако ученые доказывают, что применение нанопроводников должно позволить проникнуть в мозг еще глубже. В статье, описывающей использование микрокатетеров, газета New York Times приводит высказывание одного из медиков: «В техническом отношении нет препятствий к тому, чтобы достигнуть любой части мозга»[56 - Grady, Denise. Breaching a Barrier to Fight Brain Cancer // New York Times, November 17, 2009. http://www.nytimes.com/2009/11/17/health/17tumor. html?ref=science.].
Конечно, любому из нас ясно, что введение в живой мозг множества нанопроводов чревато проблемами. Каким образом провести тысячи нанопроводников через все изгибы и сплетения капилляров? (Последние – так же искривлены и перекручены, как ветви баобаба). Как подвести каждый из нанопроводов к заданному месту? Что будет, если они перепутаются? Как предотвратить короткое замыкание при их возможном контакте? Как быть с тромбами в кровеносных сосудах? А вдруг проводок пройдет сквозь капиллярную стенку? Каким мыслится электропитание? Как я уже отметил, это очень смелая идея.
В сущности, все возражения подобного рода уже высказывались в 1970-х годах – в связи с кохлеарными имплантами. Критики доказывали: нет никакой возможности ввести электроды в узкую кохлеарную область – улитку внутреннего уха, «утопленную» в черепе на глубину полтора дюйма и размер которой не превышает горошины. Даже если нечто подобное и удастся, говорили они, то во влажной и соленой среде тела весьма вероятно короткое замыкание между электродами. А если получится преодолеть и эту проблему, настаивали противники имплантации, все равно нельзя будет компенсировать недостаток информации, который неизбежно проявится из-за потери 16 000 волосковых сенсорных клеток (hair cells), прежде передававших сигналы слуховым нервам. И потом: как, мол, будет функционировать электричество в устройстве, целиком расположенном внутри человеческого тела? А как добиться того, чтобы компьютер, размещенный внутри черепной коробки и связанный с электродами, имел необходимую производительность? (В ранних экспериментах для переведения звуковых сигналов в цифровую форму и передачи их на антенну импланта, разработчики использовали компьютеры размером с холодильный шкаф. Подопытные могли что-то слышать только сидя рядом с ними – да и то если были соединены с машиной специальным кабелем). Но несмотря ни на что все эти проблемы были решены в течение двух десятков лет. Сейчас, печатая этот тест, я слышу щелканье клавиатуры, тихое гудение кондиционера и легкие шорохи подушки за моей спиной.
Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера: