45
48
51
52
P
47
47
50
53
54
P
53
53
56
57
P
59
59
60
P
61
61
где P
– простые числа, образующие симметричные пары;
d
– разница соседних простых чисел P
– P
по строке или по столбцу.
Выделим основные свойства построенной таблицы 5:
во-первых, для любого числа 2n по таблице можно составить симметричные пары простых чисел; а
во-вторых, для любой пары симметричных простых чисел можно найти соответствующие им числа n и соответствующее ему четное число 2n.
Пользоваться таблицей очень просто.
Для этого берем любое четное число 2n и в таблице находим соответствующее ему число n. Затем, двигаясь по горизонтальной строке и вертикальному столбцу, выбирается симметричная пара простых чисел.
Например, для четного числа 44, путем деления его на число 2 получаем число n равное 22. Затем по таблице выбираем ячейку с данным числом и пары симметричных простых чисел, соответствующих этому числу путем мысленного движения вверх по столбцу и влево по строке. Для числа 22 таких пар оказалось четыре. В результате имеем пары: (13,31); (7,37); (3,41); (1,43).
Если известна симметричная пара простых чисел и необходимо определить число ей соответствующее, выбирается строка и столбец, соответствующие паре, а затем на пересечении выбранных строки и столбца находиться число n, которому соотноситься выбранная симметричная пара.
Например, для пары простых чисел (13,31) в пересечении строки числа 13 (P
) со столбцом числа 31 (P
) выбираем число n равное 22. Тогда четное число 2n будет равно 44, которое равно сумме симметричной пары чисел.
Изучение полученной таблицы 5 показывает, что, она бесконечна и охватывает все натуральные числа от 1 до ?.
Это следует из того, что множество простых чисел бесконечно, что позволяет сделать вывод о бесконечности и таблицы 5. В практических целях таблица 5 может ограничиваться тем предельным числом n, до которого исследуются симметричные простые числа.
Анализируя таблицу 5, можно предположить, что для любого числа от 1 до n найдется хотя бы одна симметричная пара простых чисел.
Заметим еще одно важное, но не совсем очевидное свойство таблицы 5.
Если обозначить разность между двумя соседними простыми числами в строке или столбце как d
, то она будет равна
d
=p
– p
, (4.1)
где p
– i –тое простое число в строке или в столбце;