Оценить:
 Рейтинг: 0

Симметричные числа и сильная гипотеза Гольдбаха-Эйлера

Год написания книги
2023
Теги
<< 1 ... 13 14 15 16 17 18 19 20 21 ... 28 >>
На страницу:
17 из 28
Настройки чтения
Размер шрифта
Высота строк
Поля

45

48

51

52

P

47

47

50

53

54

P

53

53

56

57

P

59

59

60

P

61

61

где P

– простые числа, образующие симметричные пары;

d

– разница соседних простых чисел P

– P

по строке или по столбцу.

Выделим основные свойства построенной таблицы 5:

во-первых, для любого числа 2n по таблице можно составить симметричные пары простых чисел; а

во-вторых, для любой пары симметричных простых чисел можно найти соответствующие им числа n и соответствующее ему четное число 2n.

Пользоваться таблицей очень просто.

Для этого берем любое четное число 2n и в таблице находим соответствующее ему число n. Затем, двигаясь по горизонтальной строке и вертикальному столбцу, выбирается симметричная пара простых чисел.

Например, для четного числа 44, путем деления его на число 2 получаем число n равное 22. Затем по таблице выбираем ячейку с данным числом и пары симметричных простых чисел, соответствующих этому числу путем мысленного движения вверх по столбцу и влево по строке. Для числа 22 таких пар оказалось четыре. В результате имеем пары: (13,31); (7,37); (3,41); (1,43).

Если известна симметричная пара простых чисел и необходимо определить число ей соответствующее, выбирается строка и столбец, соответствующие паре, а затем на пересечении выбранных строки и столбца находиться число n, которому соотноситься выбранная симметричная пара.

Например, для пары простых чисел (13,31) в пересечении строки числа 13 (P

) со столбцом числа 31 (P

) выбираем число n равное 22. Тогда четное число 2n будет равно 44, которое равно сумме симметричной пары чисел.

Изучение полученной таблицы 5 показывает, что, она бесконечна и охватывает все натуральные числа от 1 до ?.

Это следует из того, что множество простых чисел бесконечно, что позволяет сделать вывод о бесконечности и таблицы 5. В практических целях таблица 5 может ограничиваться тем предельным числом n, до которого исследуются симметричные простые числа.

Анализируя таблицу 5, можно предположить, что для любого числа от 1 до n найдется хотя бы одна симметричная пара простых чисел.

Заметим еще одно важное, но не совсем очевидное свойство таблицы 5.

Если обозначить разность между двумя соседними простыми числами в строке или столбце как d

, то она будет равна

d

=p

– p

, (4.1)

где p

– i –тое простое число в строке или в столбце;
<< 1 ... 13 14 15 16 17 18 19 20 21 ... 28 >>
На страницу:
17 из 28