Оценить:
 Рейтинг: 0

Взгляд со стороны. Естествознание и религия

Год написания книги
2022
Теги
<< 1 2 3 4 5 6 ... 39 >>
На страницу:
2 из 39
Настройки чтения
Размер шрифта
Высота строк
Поля

Данное выражение квантовая физика рассматривает как математическое свидетельство корпускулярно-волнового дуализма частиц. В левой части формулы – длина волны, в правой части – масса частицы.

Волна де Бройля, или волна вероятности, имеет специфическую природу и не имеет аналога среди волн, которые изучает классическая физика. Она определяет плотность вероятности обнаружения частицы в конкретной точке пространства. Квадрат амплитуды волны показывает вероятность появления частицы в указанной точке.

В соответствии с квантовой теорией, для нерелятивистского электрона, медленно движущегося в сравнении со скоростью света и ускоренного разностью потенциалов в интервале от сотен до тысяч вольт, дебройлевская длина волны будет ?10

метра, то есть одного порядка с размерами атомов и расстояниями между атомами и молекулами в твёрдых телах.

Для объекта величиной с пылинку массой m = 10

грамма и скоростью v = 1 мм/с длина волны де Бройля составит порядка 10

метра. Полученная длина меньше наименьшего известного в физике размера – радиуса ядра атома – на 7 порядков (в 10 млн раз).

Когда волна вероятности сопоставима с размерами области, в которой движется данная частица, волновые свойства её проявляются в значительной мере. Для электрона это размеры атома и расстояния между атомами в твёрдых телах. Для рассматриваемой пылинки её волновые свойства становятся настолько незначительными, что ими просто пренебрегают. Поэтому классическая нерелятивистская механика или механика Ньютона входит в релятивистскую и квантовую механику как приближённый предельный случай.

Подобие дуализму, свойственному квантовым объектам, при желании можно усмотреть в фазовых превращениях любого физического вещества. В зависимости от характера проводимых действий, например, изменяя температуру, мы можем превратить вещество в жидкое или твёрдое состояние, а тела аморфного строения, при определённых температурных условиях, могут одновременно пребывать в этих двух состояниях. Но если фазовые превращения вещества для нас привычное и полностью предсказуемое явление, то квантовый мир с его причудливым поведением для человеческого сознания представляется нереальным.

Отображение частицы одновременно и частицей, и волной невозможно сопоставить с реальным физическим объектом. Понимая это, датский физик-теоретик Нильс Бор, будучи директором института, приучал молодых учёных к мысли, что мир квантовой механики именно так устроен. С этим ничего не поделаешь и надо принимать квантовую механику такой, какая она есть.

Если в классической физике поле – это непрерывно распределённый в пространстве объект, то в квантовой теории поля все элементарные частицы являются квантами соответствующих полей. Наделив поля квантовой природой, квантовая теория совместила несовместимое для классической физики. Все элементарные частицы в один миг стали квантами соответствующих полей. На смену несопоставимым объектам в классической физике – полям и частицам – пришли единые физические объекты в виде полей в четырёхмерном пространстве-времени. Элементарное взаимодействие при этом рассматривается как взаимодействие полей в определённой точке пространства или превращение в этой точке одних частиц в другие. Вселенная стала состоять не из мельчайших частиц, а из множества различных полей: глюонного, кваркового, электронного, электромагнитного и т. д.

Гипотеза корпускулярно-волнового дуализма наталкивается на определённые трудности при объяснении поведения частиц в экспериментах с двумя щелями. Существуют и другие сложности у теоретической физики при представлении частицы одновременно частицей и волной. Всё это даёт почву усомниться в реальности корпускулярно-волнового дуализма.

«Физика должна быть больше, чем набор формул, которые предсказывают, что мы будем наблюдать в эксперименте; она должна давать картину того, какова реальность на самом деле», – утверждает американский физик-теоретик Ли Смолин[8 - Смолин Ли. Неприятности с физикой: взлёт теории струн, упадок науки и что за этим следует: Пер. с англ., 2006. http://www.rodon.org/sl/nsfvtsunichzes/.]. Квантование полей в современной физике – математический приём, не имеющий ничего общего с реальностью. Несоответствие между реально происходящим событием и его математической моделью прекрасно демонстрирует математическое представление колебательного движения струны.

Движение струны музыкального инструмента в математическом описании сводится к решению дифференциального уравнения в частных производных. Это уравнение можно решить несколькими способами. Решение уравнения методом разделения переменных (методом Фурье) представляет колебание струны в виде колеблющегося бесконечного числа различных струн (математических волн), каждая из которых имеет свою частоту колебаний.

Разумеется, что представление колебания реальной струны в виде бесконечного числа колеблющихся виртуальных струн ничего общего с реальным физическим процессом не имеет. Тем не менее метод Фурье имеет огромное практическое значение.

Этот приём позволяет решать на практике многочисленные задачи, которые сложно решить другим путём. Например, передача видеоизображения на компьютер немыслима без преобразований Фурье. Использование вычислений, представляющих сигнал в виде простых синусоидальных волн, позволяет аудио- и видеофайлам сжиматься до размеров, необходимых для передачи информации. В электротехнике мнимые гармонические составляющие исследуемого периодического сигнала многим кажутся более реальными, чем сам исследуемый сигнал.

Противоречивость корпускулярно-волнового дуализма усматривается в самой сути движения квантовых объектов. В соответствии с принципом неопределённости Гейзенберга существует теоретический предел точности одновременного измерения положения частицы в пространстве и её скорости (импульса). Исходя из принципа неопределённости, чем конкретнее частица проявляет свойства частицы, тем неопределённее становятся её волновые свойства и наоборот.

Наглядной демонстрацией принципа неопределённости может служить струна, колеблющаяся с высокой скоростью. Такая струна внешне выглядит в виде размазанного следа. Чтобы узнать, в каком конкретно месте находится струна в данный момент времени, нужно зафиксировать её положение. Но тогда мы ничего не сможем сказать о временной характеристике – частоте колебаний. Для определения частоты колебаний струны необходимо некоторое время наблюдать за её движением. Но тогда становится для нас неопределённым положение струны. Будь наше восприятие безынерционным, мы бы смогли наблюдать вместо размазанного следа реальную картину движения колеблющейся струны.

Предположим, что у нас имеется абсолютно безынерционный и абсолютно чувствительный прибор для наблюдения за движением элементарной частицы, например свободного нейтрона, который имеет реальную величину массы покоя. Будем ли мы наблюдать одновременно нейтронное поле и неотделимую от поля материальную частицу, или же какую-то другую картину?

Можно предположить, что движение частицы будет сопровождаться попеременным появлением нейтронного поля и частицы, и это будет выглядеть как взаимопревращения энергии поля и энергии классической массы. Редукция фон Неймана (коллапс волновой функции) не противоречит такому предположению и, возможно, отражает реальный физический процесс мгновенного превращения волны в реальную частицу. Но мгновенное превращение волны в частицу (редукция) требует мгновенного действия, превышающего скорость света, что противоречит теории Эйнштейна.

По мнению физиков, при коллапсе волновой функции принцип причинности (влияние событий друг на друга) не нарушается, информация не передаётся. Однако многие современные учёные уверены, что ОТО не работает в квантовом мире и для квантовых объектов неприменима.

Противоречит теории относительности и квантовая телепортация, где свойства одной из двух запутанных частиц могут передаваться другой запутанной частице с бесконечной скоростью на сколь угодно большое расстояние.

Если предположить, что квантовая телепортация осуществляется не за счёт переноса свойств частицы с бесконечной скоростью, а за счёт обмена информацией с гипотетическим информационным полем Вселенной, с которым непрерывно взаимодействуют материальные объекты, проблема со сверхсветовой скоростью исчезает.

Аналог телепортации можно наблюдать и на макроуровне, рассматривая взрыв снаряда. Если до взрыва снаряд был неподвижен, суммарный импульс его осколков равен нулю. После взрыва у разорвавшегося на два осколка снаряда, измерив импульс одного из осколков, можно мгновенно определить величину импульса второго осколка, независимо от расстояния, на которое он улетел.

Квантовая теория утверждает, что в вакууме, в соответствии с принципом неопределённости, происходит постоянное рождение и исчезновение виртуальных частиц. При этом скорость виртуальных частиц из-за её бесконечной величины не имеет физического смысла. Попытка вычислить массу виртуальной частицы в математике приводит к мнимому значению массы.

Виртуальные частицы в квантовой теории имеют основополагающее значение. Все взаимодействия частиц и их превращения в другие частицы квантовая теория рассматривает как процессы, сопровождающиеся рождением и поглощением виртуальных частиц свободными реальными частицами.

На фоне виртуальных процессов, а они занимают центральное место в квантовой теории, предположение о том, что движение можно представить как постоянные взаимопревращения энергии поля и энергии механической массы, не столь уж фантастично. Такой взгляд на движение физических тел не противоречит ни общепринятому корпускулярно-волновому дуализму, ни квантовой теории в целом.

В последнее время возрождается интерес к интерпретации де Бройля – Бома, известной также как теория волны-пилота. Теорию впервые предложил в 20-х гг. прошлого века Луи де Бройль. Но он вынужден был отказаться от своей гипотезы в пользу копенгагенской интерпретации квантовой механики. В отличие от копенгагенской интерпретации, где частица и волна могут быть (а могут и не быть) одной сущностью, в теории де Бройля сама частица формирует пилотную волну, и они сосуществуют одновременно.

Американский физик и философ Дэвид Бом в 50-х гг. заново открыл и развил теорию. В опубликованной в 1952 г. статье он предположил, что частицы существуют всегда, а не только в момент их наблюдения. А их поведение определяет новая, ранее неизвестная сила – пилотная волна. Предлагаемая Бомом интерпретация воспроизводит значительную часть поведения квантового мира, сохраняя принцип реализма. Она позволяет отказаться от волнового дуализма и коллапса волновой функции, однако связана с исключительной нелокальностью при описании движения частиц.

В классической теории свет рассматривается как электромагнитная волна, и теория волновой природы света в XIX в. была общепринятой. Но Альберт Эйнштейн, неожиданно для всех, выдвинул идею, что свет в действительности состоит из частиц. Большинство физиков не согласились с тезисом Эйнштейна. Лауреат Нобелевской премии Макс Планк вообще пришёл в замешательство. Учёный не на шутку испугался и заявил, что существующая теория света будет отброшена в далёкое прошлое. В итоге в учёных кругах выход был найден: в рамках оптики и классической электродинамики свет – электромагнитная волна. В рамках квантовой механики свет одновременно и частица (фотон), и волна.

Эйнштейн теоретически предсказал возможность превращения энергии волны в энергию частицы и наоборот, и выдвинул идею об эквивалентности массы и энергии. Экспериментально наблюдаемые рождение и аннигиляция электронных пар (превращение электрона и позитрона в безмассовые фотоны) подтвердили теорию учёного. Процесс аннигиляции показал, что масса покоя может переходить в другие формы энергии.

Следует отметить, что не сама по себе масса или поле обладают энергией, но энергия наделена такими физическими свойствами, как масса или поле. Такая особенность энергии позволяет превращаться элементарным частицам друг в друга, рождаться или уничтожаться при взаимодействиях, а безмассовым фотонам световых волн оказывать физическое давление на твёрдые тела при взаимодействии с ними.

Распространение полей, или, согласно квантовой теории, движение безмассовых частиц, происходит с максимально возможной скоростью. Поле, соответственно, и безмассовую частицу, характеризующую данное поле, невозможно ускорить или замедлить. Безмассовая частица не имеет ни размеров, ни строения и как реальный объект не существует.

Не более понятным предстаёт перед нами и электрон, имеющий физическую массу и магнитный момент, несущий на себе заряд, но в то же время не имеющий размеров и строения. Попытка наделить электрон размерами мгновенно вызывает неразрешимое противоречие в классической физике. Протяжённый электрон должен рассматриваться как абсолютно твёрдое тело, неспособное деформироваться, поскольку деформация предполагает независимое перемещение отдельных частей тела. Но в релятивистской механике существование абсолютно твёрдых тел в принципе невозможно.

Не имеет корректного решения и взаимодействие электрона с собственным электромагнитным полем, наделяющим электрон бесконечно большой электромагнитной массой. Для компенсации этой массы физики-теоретики в уравнениях формально приписывают частице бесконечную отрицательную массу неэлектромагнитного происхождения[9 - Ландау Л. Д., Лифшиц Е. М. Краткий курс теоретической физики: В 3-х кн. – М.: Наука, 1969. – Кн.1:Механика. Электродинамика.].

Бесконечности, которые появляются в квантовой механике при вычислении некоторых физических величин, не имеют физического смысла и вызывают расходимости. Расходимости появляются вследствие того, что в современной теории элементарные частицы рассматриваются как точки, то есть как материальные объекты без протяжённости.

В квантовой теории поля не только сохраняются старые, но и появляются новые расходимости, опять-таки связанные с точечностью объектов – взаимодействие между полями определяется описывающими поля величинами, взятыми в одной и той же точке пространства и в один и тот же момент времени. Наделение частиц протяжённостью устраняет расходимости, однако противоречит теории относительности, постулирующей конечность скорости света.

Всё это говорит о том, что квантовая физика не описывает реальный мир. Но это нисколько не мешает квантовой механике, с её парадоксами и противоречиями, занимать прочную позицию устоявшейся, детально разработанной теории. Она имеет прекрасную математическую базу, многократно подтверждена экспериментами и имеет многочисленные применения на практике.

Согласно квантовой теории, все физические тела состоят из элементарных частиц, масса покоя которых не равна нулю. Овеществлённая материя занимает незначительную долю объёма тела (см. "Генетический Код Вселенной"). Всё остальное безмассовое пространство – это огромное количество взаимодействующих полей.

Поскольку свойства макроскопических тел определяют составляющие его частицы, следует предположить, что перемещение физических объектов в пространстве происходит аналогично элементарным частицам. Можно также допустить, что квантовые поля при движении физического тела переходят в коллективное состояние и с помощью вакуума переносят энергию вещества.

Одним из примеров коллективного состояния служит сверхтекучесть. При сверхтекучести частицы складываются в микроскопическое квантовое состояние и, действуя коллективно, образуют совершенно новый вид движения, при котором полностью отсутствует трение.

На макроуровне коллективное поведение молекул можно наблюдать, бросив в воду камень. На поверхности воды появляются убегающие от камня волны, образованные упорядоченным движением молекул воды.

Особым коллективным состоянием частиц характеризуется квантовая запутанность, когда частицы утрачивают свою самостоятельность и становятся зависимыми друг от друга.

Более тридцати лет назад 23-летний выпускник Кембриджского университета Сет Ллойд, изучая поведение запутанных частиц, получил удивительный результат. По мере того, как частицы всё больше смешиваются друг с другом, информация, которая первоначально описывала их по отдельности (например, «1» для вращения по часовой стрелке, «0» – против часовой), переходит на описание системы запутанных частиц в целом. Свои взгляды в 1988 г. Ллойд изложил в докторской диссертации. При попытке опубликовать статью редакция отказала в публикации, сославшись на то, что в «этой статье нет физики»[10 - Wolchover N. New Quantum Theory Could Explain the Flow of Nime, 25.04.2014 г. https://www.wired.com/2014/04/quantum-theory-flow-time/.].

С развитием теории квантовой информации учёные вплотную занялись исследованием поведения запутанных частиц. В 2017 г. физики из Университета Женевы в Швейцарии смогли продемонстрировать квантовую систему, в которой с помощью одного фотона было одновременно запутано 16 миллионов атомов[11 - Fr?wis F., Strassmann P. et al. Experimental certification of millions of genuinely entangled atoms in a solid. – Nature Communications, 2017. https://www.nature.com/articles/s41467–017–00898–6.].

Масса, образующая вещество, из которого состоят все физические тела, – одно из самых загадочных понятий в науке. Массе посвящено огромное количество работ, но до настоящего времени остаётся неясным смысл этого понятия.

Радикальный взгляд для своего времени (1884 г.) на образование вещества изложил в кинетическом учении о природе барон Н. Деллингсгаузен. Его гипотезу приводит в своём классическом труде «История физики» доктор философии Фердинанд Розенбергер: «Световые и тепловые явления показывают, что всякая материя находится в колебательном движении, которое распространяется в ней волнообразно. Отсюда можно заключить, что внутренние движения материи, в силу её непрерывности, являются круговыми движениями, составленными из отдельных элементарных колебаний. <…> Так как мы можем представить себе, что из каждой точки пространства исходят колебания, в каждой точке пространства должно встречаться бесчисленное множество волн. Эти встречающиеся волны могут в некоторых местах образовать стоячие волны. Такие части пространства, где образуются подобные стоячие колебания, получают тогда известную устойчивость – они образуют тела»[12 - Розенбергер Ф. История физики: В 4-х кн. Пер. с нем. – М-Л., НКТП СССР, 1936. – Часть 3, выпуск 2: История физики за последнее (XIX) столетие.].

Армянский учёный Георгий Киракосян предлагает рассматривать частицу как локализовано-стоячую волну. Основываясь на таком представлении частиц, учёный смог объяснить суть одной из главных фундаментальных постоянных микромира – постоянной тонкой структуры ?, смысл которой всегда был загадкой для учёных. Указанная безразмерная константа определяет все физические и химические свойства вещества. Согласно гипотезе Киракосяна, постоянная тонкой структуры является классической волновой константой[13 - Киракосян Г. Ш. Корреляция Постоянной Тонкой Структуры с перераспределением интенсивностей в интерференции циркулярно поляризованной Волны Комптона. http://n-t.ru/tp/ng/fs.pdf.].

Физики не разделяют подход Киракосяна в представлении частицы в виде локализовано-стоячей волны: механическая масса и полевая масса – понятия нетождественные. При распространении волны, как правило, переносят не массу, а энергию.

Вся сложность изучения микромира состоит в том, что наши органы чувств не созданы для восприятия малых величин. Уже на микросекундном интервале механическое движение для нас замирает – снаряд за это время передвигается на несколько миллиметров. В интервале времени порядка 10
<< 1 2 3 4 5 6 ... 39 >>
На страницу:
2 из 39

Другие электронные книги автора Николай Кудрявец