Оценить:
 Рейтинг: 0

Взгляд со стороны. Естествознание и религия

Год написания книги
2022
Теги
<< 1 2 3 4 5 6 7 8 9 10 ... 39 >>
На страницу:
6 из 39
Настройки чтения
Размер шрифта
Высота строк
Поля

Представим систему: источник информации – информация – биологический усилитель – атомная бомба. Предположим, что оператор, который в рассматриваемой системе является биологическим усилителем, по команде «Уничтожить объект!» нажимает кнопку и приводит в действие взрывное устройство атомной бомбы.

Сопоставив нулевую энергию информации, поступившую на вход биологического усилителя, и усилие мускулов, необходимое, чтобы привести в действие взрывное устройство на выходе, можно утверждать, что биологический усилитель имеет бесконечный коэффициент усиления (энергию носителя информации мы не учитываем, поскольку в рассматриваемом примере она не оказывает никакого влияния на действия оператора). Предположение, что живая система представляет собой биологический усилитель с гигантским коэффициентом усиления, впервые выдвинул немецкий физик и математик Паскуаль Йордан.

В рассматриваемом усилителе можно выделить два каскада усиления. В первом каскаде нейроны мозга, получив извне информацию, сформировали на выходе сигнал, обладающий определённой энергией. Поскольку сама информация не обладает энергией, первый каскад усиления имеет бесконечно большую величину. Рассматривая второй каскад усиления, мы видим, что на его вход подаётся энергетический импульс, и его коэффициент усиления имеет конечное и вполне определённое значение.

В первом каскаде биологического усилителя информация, поступившая на вход, привела к образованию на выходе энергии. В данном примере энергия из ничего не возникла – закон сохранения энергии как бы не нарушен. Но рассматриваемый информационно-энергетический процесс не вписывается в классическую физику, поскольку начало нестабильности в системе положила нематериальная сущность – информация.

Представим, что во Вселенной имеется определённая структурированная информация, записанная на нематериальном носителе – геометрии пространства. Информация и геометрия пространства не обладают энергией. Также существует космический информационный усилитель, похожий на биологический, но не требующий использования известных физике источников энергии, а его вход рассчитан на приём информации с геометрии пространства.

При поступлении структурированной информации на вход такого информационного усилителя на выходе появится энергия:

Е = к · Еи,

где Е – энергия на выходе информационного усилителя;

к – коэффициент усиления информационного усилителя (равен бесконечности);

Еи – энергия, поступившая на вход информационного усилителя (равна нулю).

Уравнение представляет собой математическую неопределённость в виде произведения бесконечно малой величины на бесконечно большую величину. Данная неопределённость, в зависимости от начальных условий, может принять любое значение от нуля до бесконечности. В таком случае не возникает ли теоретическая возможность с помощью нематериальной сущности получать неограниченное количество энергии?

Рассмотрим с информационной стороны процесс образование атомного ядра. Известно, что в атомном ядре нуклоны проявляют свойства, которые отсутствовали у них в свободном состоянии, – между нуклонами начинают действовать специфические ядерные силы. Полного представления о ядерных силах у учёных до настоящего времени нет. Из-за огромной сложности расчёта ядерных взаимодействий теоретическая физика так и не смогла создать единую теорию атомного ядра.

По закону сохранения квантовой информации нуклоны должны содержать одну и ту же информацию, независимо от их месторасположения. Но если при образовании атомного ядра у нуклонов появляются новые свойства, логично предположить, что у них возникает и новая информация. В то же время нельзя исключить и альтернативное предположение: в момент образования атомного ядра новая информация не возникает – нуклоны её откуда-то получают.

Варианты получения нуклонами новой информации теоретическая физика не рассматривает. Не касается она и событий, которые могут происходить за время, меньшее, чем планковское (?5,4·10

с) и на расстояниях меньше планковских (1,6·10

м), то есть в областях от 0 до ?10

секунды и от 0 до ?10

метра. С позиций теоретической физики в этих диапазонах величин может происходить всё что угодно, следовательно, и явления, не связанные с материальными процессами. Поскольку ниже границы планковских величин физические законы, описывающие материальный мир, не работают, можно предположить, что в этом диапазоне величин Вселенная имеет не материальную, а информационную природу.

В таком случае стоит ли безапелляционно отвергать Божественную (информационную, по сути) концепцию возникновения Вселенной, рассматривая её на пространственно-временных интервалах, где Вселенная не подчиняется ни одному из известных физических законов? И когда учёный с мировым именем, нобелевский лауреат В. Л. Гинзбург категорически заявил, что все рассуждения креационистов – бред, противоречащий науке, это вызывает удивление[38 - Expert.ru: Виталий Гинзбург про константы и бога, 22.05.2008. https://expert.ru/russian_reporter/2008/19/ginzburg.]. Категоричность в науке – не лучший способ установления истины.

Для нас непонятно, как может возникнуть противоречие между научным и религиозным воззрениями, если они рассматривают Мироздание с несовместимых друг для друга сторон. Главное различие между наукой и религией, по словам Макса Планка, состоит в том, что наука преимущественно пользуется разумом, а религия – верой[39 - Макс Планк. Религия и естествознание. – Вопросы философии, 1990, № 8. http://vivovoco.astronet.ru/VV/PAPERS/ECCE/PHIL2.HTM.]. Религию не интересуют физические законы и теории, объясняющие устройство материального мира. Сфера её интересов – духовное совершенствование человека.

Чем ближе физика подходит к истокам Мироздания, тем дальше она отдаляется от привычного для нас материального мира. «Мне кажется, я смело могу сказать, что квантовой механики никто не понимает. <…> Если сможете, не мучайте себя вопросом "Но как же так может быть?", ибо в противном случае вы зайдёте в тупик, из которого ещё никто не выбрался, – предупреждает нас лауреат Нобелевской премии Ричард Фейнман. – Никто не знает, как же это может быть»[40 - Фейнман Р. Характер физических законов: Пер. с англ., 2-е изд. исп. – М.: Наука, 1987. (Б-ка «Квант», № 62).].

А. В. Мелких утверждает, что Вселенная запрограммирована. По теории учёного, сложнейшие механизмы, обеспечивающие стабильность атомов и определяющие строение вещества, имеют информационную природу, что полностью исключает их случайное возникновение. Тот факт, что современная наука не располагает никакими свидетельствами, указывающими на возможность образования физического вещества из альтернативных атому элементов, говорит в пользу выводов учёного.

Теория известного цитогенетика Лима-де-Фариа объединяет неживую и живую материю в одно целое. Наблюдаемое сходство в принципах построения неорганического вещества и живой материи может служить подтверждением теории учёного:

– физические тела и живые организмы состоят из одних и тех же частиц – нейтронов, протонов и электронов;

– многоуровневая иерархия строения наблюдается как в объектах неживой материи, так и в живых организмах;

– активность различных генов в клетках делает клетки непохожими друг на друга – количественный состав нуклонов и электронов, образующих атомы, определяет свойства химических элементов;

– межклеточные контакты обеспечивают клеткам общение друг с другом, чем достигается устойчивость живого организма, – фундаментальные взаимодействия обеспечивают стабильность составных объектов неживой материи.

Предположив, что Вселенная запрограммирована, при переходе с одного уровня организации материи на другой, можно ожидать появление изменений и на информационных уровнях. Из этого следует: законы, применимые для микромира, могут оказаться неэффективными или даже неприменимыми на других уровнях строении материи, и наоборот. Подобно тому, как невозможно построить наглядную модель современного круизного лайнера с отображением всех его агрегатов и механизмов, нельзя создать единую теорию, которая в состоянии описать все происходящие во Вселенной процессы.

Механика Ньютона не работает в микромире и, вероятнее всего, в масштабах, сопоставимых с наблюдаемой Вселенной. Закон сохранения энергии за уши втянут в квантовый мир и, по-видимому, неприменим и для таких объектов Вселенной, как чёрные дыры. Учёными не найдено ни одного способа вывести из физики элементарных частиц значение космологической константы (физической постоянной, характеризующей свойства вакуума), сопоставимое с полученным в космологии. Значение космологической постоянной, предсказываемое квантовыми теориями поля, на много порядков превосходит полученное в космологии и создаёт проблему космологической постоянной.

Универсальная теория, описывающая Вселенную на всех пространственно-временных масштабах, у теоретической физики отсутствует. Попытки объединить две частные теории – квантовую механику и ОТО – в одно целое, предпринимаемые на протяжении столетия, не дали ощутимых результатов. Главная проблема объединения в том, что ОТО работает на непрерывном пространстве, в то время как квантовая механика описывает объекты дискретной природы. Это порождает между ними непримиримые разногласия при описании материального мира на разных уровнях его организации.

В соответствии с ОТО, частица, обладающая массой, должна искривлять пространство. В то же время принцип неопределённости Гейзенберга утверждает, что местонахождение частицы в конкретный момент времени неизвестно.

Согласно квантовой механике, чем больше мы сообщаем энергии частице, тем сильнее «рассеяние» этой частицы в пространстве. В ОТО энергия эквивалентна массе, и чем больше получает частица энергии, тем больше становится её масса в конкретной точке пространства. И в некоторый критический момент должен произойти гравитационный коллапс частицы (катастрофически быстрое сжатие под действием сил гравитации) в микроскопическую чёрную дыру. Эксперименты на ускорителях показали, что при столкновении частиц высоких энергий микроскопические чёрные дыры не образуются.

Две самые авторитетные физические теории вступают в противоречие и при описании чёрных дыр. Образование чёрных дыр в пространстве следует из решений уравнений Эйнштейна. Стивен Хокинг показал, что чёрная дыра, окружённая квантовыми полями, испускает частицы и испаряется. Гигантские размеры информации, накопленные с поглощённым веществом, исчезают при испарении чёрной дыры, что несовместимо с квантовой механикой.

Однозначного решения проблема парадокса чёрной дыры не имеет, но некоторые учёные полагают, что излучение Хокинга получено в определённом приближении, и к нему есть квантовые поправки. Они вносят существенный вклад в эффект, полученный Хокингом, следовательно, парадокса чёрной дыры нет[41 - Ахмедов Э. «Никакого парадокса нет», 09.09.2015. https://nplus1.ru/material/2015/09/09/hawking-and-the-paradox.].

По мнению известного учёного Ф. А. Цицина, «ЧД [чёрная дыра]… является "чёрным ящиком", на входе которого – аккрецируемая масса (энергия, заряд…); внутри которого действуют не известные нам физические законы; на выходе – должно наблюдаться по меньшей мере хокинговское излучение, но не исключены и на много порядков превышающие его феномены антиколлапса – выбросы всего того, что поступило на входе (с неизвестным перераспределением свойств, неизвестными временными сдвигами, неизвестным распределением выбросов по направлениям…). Возможные масштабы феноменов антиколлапса характеризуются тем, что в центральной планковской сингулярности ЧД заключено и таким образом не подчиняется нашей фундаментальной физике практически всё вещество этого объекта (а масса – кроме полевой)»[42 - Цицин Ф. А. Чёрные дыры и современная научная картина мира. – В сб.: Астрономия и современная картина мира. М.: ИФРАН, 1996. https://iphras.ru/uplfile/root/biblio/1996/Astronomiya.pdf.].

Современные физические теории привязывают начало рождения Вселенной к планковским величинам. И все характеристики первоначального состояния Вселенной определяют исключительно из этих величин. До сих пор у теоретической физики нет ответа на вопрос, от решения которого зависит полнота космологической модели Вселенной. Это вопрос происхождения пространства и времени. По мнению некоторых исследователей, они родились вместе с материей, с энергией и являются результатом Большого взрыва.

Резонно предположить, что до Большого взрыва уже существовала никому не известная Первооснова, включающая в себя всё сущее. И эта независимая от материи Сущность, постоянно существующая, вполне могла не только положить начало процессам образования Вселенной, но и управлять в дальнейшем развитием этих процессов.

Квантовая механика и трансцедентальность

Мысль изречённая есть ложь.

    Тютчев

В квантовой механике можно выделить два различных ответвления. Одно ориентировано на получение теоретических и экспериментальных результатов, другое – на интерпретацию квантовой механики. Неоднозначность понимания квантовой механики вызвала к жизни многочисленные её истолкования. Они по-разному решают проблемы коллапса (редукции) волновой функции и квантовых измерений, квантовой телепортации, а также других, противоречащих здравому смыслу явлений, наблюдаемых в квантовой механике.

По мнению Бора, «как бы далеко ни выходили явления за рамки классического физического объяснения, все опытные данные должны описываться при помощи классических понятий. <…> Поэтому экспериментальная установка и результаты наблюдений должны описываться однозначным образом на языке классической физики. <…> Поведение атомных объектов невозможно отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят явления»[43 - Бор Н. Избранные научные труды: В 2 т. – М.: Наука, 1971. (Серия «Классики науки»). – Т. 2.].

Вопреки Бору Эйнштейн был уверен: «Существует нечто вроде "реального состояния" физической системы, существующего объективно, независимо от какого-то ни было наблюдения или измерения, которое в принципе можно описать с помощью имеющихся в физике средств»[44 - Эйнштейн А. Собрание научных трудов: В 4 т. – М.: Наука. 1965. (Серия «Классики науки»). – Т. 4.].

Спор между Бором и Эйнштейном остался незавершённым – физики-теоретики до настоящего времени не смогли создать непротиворечивую квантовую теорию измерения.

Одним из центральных понятий в квантовой механике является квантовая суперпозиция. В квантовой суперпозиции система может находиться не только в одном конкретном состоянии, но и одновременно в двух или более состояниях. Классический пример квантовой суперпозиции – двухщелевой эксперимент, названный известным физиком-теоретиком Ричардом Фейнманом в «Фейнмановских лекциях по физике» явлением, «….которое невозможно, совершенно, абсолютно невозможно объяснить классическим образом. В этом явлении таится сама суть квантовой механики».

Первым двухщелевой эксперимент провёл в начале XIX в. английский учёный Томас Юнг. Суть эксперимента в следующем. Имеется источник частиц, например электронов, и пластинка с двумя тонкими щелями; сзади установлен экран, на котором пролетающие через щели частицы оставляют следы.

Если мы закроем первую щель, увидим на экране тонкую полосу напротив второй щели. Если закроем вторую щель и откроем первую, полоса появится напротив первой щели. Открыв обе щели, мы будем наблюдать вместо полосы против одной из щелей интерференционную картину, что свидетельствует о прохождении частицы одновременно через обе щели. Следует отметить, что математическое описание этого процесса полностью соответствует экспериментальным данным.

Поставив около каждой щели детектор, мы обнаружим, что при прохождении электрона через экран срабатывает только один из детекторов и интерференция не наблюдается. Суперпозиции состояний нет. Наблюдение перевело объект из суммы неопределённых квантовых состояний в одно наблюдаемое классическое состояние.

Для объяснения эксперимента учёные предположили, что состояние частицы, обладающей волновыми свойствами, можно описать волновой функцией. Если частица прошла через одну щель, у неё одно состояние и одна волновая функция. Если частица прошла через другую щель, у неё другое состояние и другая волновая функция. При двух открытых щелях, согласно принципу квантовой суперпозиции, частица находится в суперпозиции первого и второго состояния (одновременно проходит через две щели). При этом её волновая функция – функция двух волновых функций, вызывающих интерференционную картину.

Принцип квантовой суперпозиции утверждает, что если квантовый объект, например электрон, может находиться в состоянии 1 и в состоянии 2, то он может находиться и в суперпозиции состояний – одновременно в состоянии 1 и 2. Суперпозиция – это не совокупность двух классических состояний частицы, а нелокализованное в пространстве состояние, в котором электрон как классический объект не существует.
<< 1 2 3 4 5 6 7 8 9 10 ... 39 >>
На страницу:
6 из 39

Другие электронные книги автора Николай Кудрявец