Оценить:
 Рейтинг: 4.5

Изнанка белого. Арктика от викингов до папанинцев

<< 1 2 3 4 5 6 7 ... 9 >>
На страницу:
3 из 9
Настройки чтения
Размер шрифта
Высота строк
Поля

Ещё один всем знакомый архив – годичные кольца деревьев. Толщина годичного слоя определяется климатическими факторами, поэтому последовательность чередования толстых и тонких колец будет одинакова у всех деревьев, растущих в одно и то же время в одной местности. Можно протянуть вглубь на несколько тысячелетий дендрохронологическую шкалу, объединяя срезы разных деревьев, ныне живущих и давно спиленных, часть времени жизни которых совпадала. Таким образом, рисунок годичных колец отражает изменения климата. Состав древесины также может служить источником информации о природных факторах, которые влияли на дерево в период его роста.

Также к естественным архивам можно отнести карбонатные скелеты моллюсков, кораллы, сталагмиты, железомарганцевые конкреции, торфяники – словом всё то, что растёт постепенно и захватывает вещество из окружающей среды, фиксируя информацию о её составе.

Изменение температуры в прошлом можно реконструировать многими способами, и что важно – эти способы взаимно независимы. Помимо упоминавшегося изотопного палеотермометра (

O и

H), индикаторами изменений климата могут служить, например, площадь ледников, ширина годичных колец деревьев, толщина ежегодного слоя осадка, формирующегося на дне озёр, и многое другое[25 - Ознакомиться с обширными материалами по палеоклимату можно на сайте Национальной администрации по океану и атмосфере США http://www.ncdc.noaa.gov/paleoclimate-data. На этом же сайте размещены результаты анализа ледовых кернов http://www.ncdc.noaa.gov/paleo/icecore/current.html.].

Перед оледенением всегда теплело

Изменение климата определяется воздействием ряда факторов космической, планетарной и антропогенной природы. Эти факторы имеют различные протяжённость во времени и периодичность, могут накладываться, усиливая или ослабляя друг друга.

Если мерить время масштабами сотен тысяч лет, то основным фактором, определяющим климат, будут изменения параметров движения Земли вокруг Солнца под влиянием других планет. Вращение Земли вокруг Солнца существенно сложнее, чем большинство из нас привыкло себе представлять. Сейчас орбита близка к круговой, но так было не всегда. Её эксцентриситет (отклонение от формы круга) меняется с периодичностью около 100 тысяч лет. Наклон оси также меняется – не сильно, в пределах пары градусов – с периодичностью около 41 тысячи лет. Кроме того, она прецессирует[26 - Прецессия – движение оси вращения по конической траектории. Каждый наблюдал прецессию, запуская в детстве юлу.] с периодичностью около 20 тысяч лет. Казалось бы, какое нам дело до таких тонкостей. Однако ещё в 1920-е годы сербский инженер Милутин Миланкович (1879–1958) выдвинул гипотезу о том, что изменение параметров орбиты приводит к изменениям потока солнечной энергии, достигающего Земли, и является первопричиной периодических оледенений. И действительно, анализ ледников Антарктиды и Гренландии, а также донных отложений океанов показывает циклическое изменение температур прошлого в хорошем соответствии с 100-тысячелетней периодичностью (рис. 1–4). Теория Миланковича сегодня вошла в учебники, однако поначалу была принята научным сообществом в штыки. В те времена подтвердить или опровергнуть её было практически невозможно. Да и сейчас вокруг теории Миланковича идёт активная полемика. Хотя цикличность оледенений очевидна, механизм влияния орбитальных параметров Земли в деталях не ясен и по сей день[27 - См. например [261; 266].]. Популяризаторами теории Миланковича выступили русско-немецкий климатолог Владимир Кёппен и немецкий учёный Альфред Вегенер. Вообще, теории, выдвинутые неспециалистами, с трудом принимаются научным сообществом. В некотором смысле история повторилась и с самим Вегенером: метеоролог, воздухоплаватель и астроном, он выдвинул теорию, полностью изменившую геологию – теорию дрейфа континентов. Эта концепция была воспринята современниками как очевидный вздор, но стала общепринятой спустя много лет после трагической гибели Вегенера во льдах Гренландии в 1930 году. Сейчас имя Альфреда Вегенера носит институт полярных исследований в Бремерхафене, один из ведущих в мире.

Рис. 1–4. Палеотемпературы, реконструированные по результатам бурения льда в районе станции Восток за 422 тысячи лет [170]. Мы видим, что примерно каждые 100 тысяч лет происходило резкое потепление. Историю климата Земли, по крайней мере в течение нашего геологического периода, можно рассматривать как последовательность длительных оледенений, перемежающихся короткими потеплениями. Нам повезло жить во время одного из таких потеплений. Изменения климата, связанные с параметрами орбиты Земли, носят долгопериодический характер и не определяют колебания температур в историческую эпоху

Перу близко

Другим важнейшим фактором, влияющим на климат планеты, являются извержения вулканов. Самые сильные извержения могут иметь глобальные последствия, хотя влияние их продолжается относительно недолго – не более нескольких лет. Этого, однако, может быть достаточно, чтобы изменить ход исторических событий. В качестве примера приведем цитату из «Истории Государства Российского» Н. М. Карамзина о том, как климатические изменения спровоцировали голод 1601–1603 годов в России и начало «смутного времени» [57]: «…пала на миллионы людей казнь страшная: весною, в 1601 году, небо омрачилось густою тьмою, и дожди лили в течение десяти недель непрестанно так, что жители сельские пришли в ужас: не могли ничем заниматься, ни косить, ни жать; а 15 августа жестокий мороз повредил как зелёному хлебу, так и всем плодам незрелым. Ещё в житницах и в гумнах находилось немало старого хлеба; но земледельцы, к несчастию, засеяли поля новым, гнилым, тощим, и не видали всходов ни осенью, ни весною: всё истлело и смешалось с землёю. Между тем запасы изошли, и поля уже остались незасеянными. Тогда началося бедствие, и вопль голодных встревожил Царя. Не только гумна в сёлах, но и рынки в столице опустели, и четверть ржи возвысилась ценою от 12 и 15 денег до трёх (пятнадцати нынешних серебряных) рублей. Борис велел отворить Царские житницы в Москве и в других городах; убедил Духовенство и Вельмож продавать хлебные свои запасы также низкою ценою; отворил и казну: в четырёх оградах, сделанных близ деревянной стены Московской, лежали кучи серебра для бедных, ежедневно, в час утра, каждому давали две морковки, деньгу или копейку – но голод свирепствовал: ибо хитрые корыстолюбцы обманом скупали дешёвый хлеб в житницах казенных, Святительских, Боярских, чтобы возвышать его цену и торговать им с прибытком бессовестным; бедные, получая в день копейку серебряную, не могли питаться. Самое благодеяние обратилось во зло для столицы; из всех ближних и дальних мест земледельцы с жёнами и детьми стремились толпами в Москву за Царскою милостынею, умножая тем число нищих. Казна раздавала в день несколько тысяч рублей, и бесполезно: голод усиливался и наконец достиг крайности столь ужасной, что нельзя без трепета читать её достоверного описания в преданиях современников. «Свидетельствуюсь истиною и Богом, – пишет один из них, – что я собственными глазами видел в Москве людей, которые, лёжа на улицах, подобно скоту щипали траву и питались ею; у мёртвых находили во рту сено». Мясо лошадиное казалось лакомством: ели собак, кошек, стерво, всякую нечистоту. Люди сделались хуже зверей: оставляли семейства и жён, чтобы не делиться с ними куском последним. Не только грабили, убивали за ломоть хлеба, но и пожирали друг друга. Путешественники боялись хозяев, и гостиницы стали вертепами душегубства: давили, резали сонных для ужасной пищи! Мясо человеческое продавалось в пирогах на рынках! Матери глодали трупы своих младенцев!.. Злодеев казнили, жгли, кидали в воду; но преступления не уменьшались… И в сие время другие изверги копили, берегли хлеб в надежде продать его ещё дороже!.. Гибло множество в неизъяснимых муках голода. Везде шатались полумёртвые, падали, издыхали на площадях. Москва заразилась бы смрадом гниющих тел, если бы Царь не велел, на своё иждивение, хоронить их, истощая казну и для мёртвых. Приставы ездили в Москве из улицы в улицу, подбирали мертвецов, обмывали, завёртывали в белые саваны, обували в красные башмаки или коты и сотнями возили за город в три скудельницы, где в два года и четыре месяца было схоронено 127000 трупов, кроме погребённых людьми христолюбивыми у церквей приходских. Пишут, что в одной Москве умерло тогда 500000 человек, а в сёлах и в других областях ещё несравненно более, от голода и холода: ибо зимою нищие толпами замерзали на дорогах».

Причиной описанного Карамзиным катаклизма, по всей вероятности, стало облако пепла – результат извержения в 1600 году вулкана Уайнапутина в Перу, одного из самых катастрофических извержений в историческое время [289; 272]. Таким образом, 1601 год стал аномально холодным даже по меркам Малого ледникового периода. Извержения такого масштаба, к счастью, случаются один-два раза в столетие. При этом в стратосферу поступает значительное количество диоксида серы, который затем окисляется до серной кислоты. Мельчайшие капельки кислоты поглощают солнечное излучение. Это приводит к резкому и недолгому (1–2 года) похолоданию в летнее время, которое особенно заметно в умеренных широтах. Лето 1601 года стало самым холодным в северном полушарии за последние 600 лет. Описанию Н. М. Карамзина созвучно стихотворение лорда Байрона «Темнота» («Darkness»):

Я видел сон, не всё в нём было сном.

Погасло солнце яркое, и звёзды

Без света, без путей в пространстве вечном

Блуждали, и замёрзшая земля

Кружилась слепо в темноте безлунной.

За утром утро шло без света дня,

О всех своих страстях забыли люди,

И в ужасе застыли все сердца

В эгоистической мольбе о свете.

<…>

Между собою все вели войну,

Ценою крови пища покупалась,

И каждый тайно, прячась от других,

Угрюмо, жадно ел. Любовь исчезла;

Одна лишь мысль осталась на земле —

О смерти неизбежной и бесславной.

Всем внутренности волчий голод грыз,

И люди мёрли, их не хоронили;

И жадно тощие съедали тощих.[28 - Перевод М. А. Зенкевича.]

Мрачная фантазия поэта имела под собой реальную основу. Стихотворение написано в 1816 году, который известен как «год без лета». Причиной климатической аномалии стало сильнейшее извержение вулкана Тамбора в 1815 году в Индонезии [242].

Светило, но не грело

Влияет ли Солнце на климат? Сама постановка вопроса может показаться абсурдной – ведь это ближайшая к нам звезда и первоисточник энергии для большинства природных процессов. Однако стоит копнуть глубже, и вопросов станет куда больше, чем ответов.

Солнце изменчиво. Иногда оно становится более активным, это сопровождается появлением тёмных пятен на его поверхности. Это было известно с древности, и сейчас невозможно сказать, кто первым открыл солнечные пятна. Количественные исследования активности Солнца начались с 1610 года, после изобретения телескопа Галилеем. С этого момента существуют регулярные записи числа пятен на Солнце.

Уильям Гершель, астроном, прославившийся открытием планеты Уран, в 1801 году опубликовал трактат под длинным названием «Наблюдения с целью понять природу Солнца, с тем, чтобы найти причины и симптомы непостоянства испускания им тепла и света, с замечаниями о вероятной пользе, что может быть извлечена из наблюдений за Солнцем». Там он впервые высказал мысль о том, что солнечная активность может серьёзным образом влиять на климат, а значит, и на экономику [192]: «…с 1695 по 1700 год пятен на Солнце не наблюдалось. Этот период продолжался 5 лет, они снова появились в 1700 году. Средняя цена пшеницы в это время составляла 3 фунта 3 шиллинга 3 1/5 пенса за кварту. Пять предыдущих лет – с 1690 по 1694 год – она стоила 2 фунта 9 шиллингов 4 4/5 пенса, а пять следующих лет – с 1700 по 1704 год – 1 фунт 17 шиллингов 11 1/5 пенса. Оба этих отличия весьма существенны: последнее составляет не менее 5:3».

Взаимосвязь между процессами на Земле и в Космосе исследовали русские космисты – в частности, А. Л. Чижевский и В. И. Вернадский. Чижевский утверждал, что пятна на Солнце влияют на многие биологические и социальные процессы [135]. Однако только сейчас благодаря развитию новых инструментальных методов химического и изотопного анализа появляется возможность количественно исследовать столь сложные взаимосвязи.

Более полутора веков назад, в 1843 году, немецкий астроном Генрих Швабе обнаружил, что количество пятен на Солнце меняется циклически, максимумы активности случаются в среднем через 11 лет и перемежаются минимумами. Однако Густав Шпёрер (1887) первым обратил внимание на исключение из этого правила. В XVII веке в течение почти 70 лет пятна на Солнце, по-видимому, отсутствовали. Позже эти выводы подтвердил Эдвард Уолтер Маундер (1890), проанализировав записи прежних лет. В то время выводы Маундера многим показались сомнительными, скептики были склонны относить их на счёт нерегулярности и неполноты наблюдений. Однако в XX веке было независимым способом подтверждено, что т. н. минимум Маундера действительно имел место с 1645 по 1715 год.

Наша планета постоянно находится в потоке галактических космических лучей (ГКЛ) – заряженных частиц сверхвысокой энергии, по большей части протонов, происхождение которых до конца не выяснено. Исследователи склонны считать интенсивность ГКЛ постоянной в течение длительного периода времени. Взаимодействуя с атомами атмосферы, космическое излучение приводит к образованию радиоактивных атомов некоторых элементов, например радиоуглерода (

C) и бериллия (

Be и

Be) – так называемых космогенных радионуклидов. Проникновению космического излучения в атмосферу препятствует магнитосфера Солнца. То есть чем активнее Солнце, тем меньше поток космических лучей и тем меньше образуется космогенных радионуклидов. Следовательно, анализируя годичные кольца деревьев на радиоактивный углерод или донные отложения, ледники и конкреции на радиоактивный бериллий, мы узнаем, как менялась солнечная активность, и увидим рост активности этих радионуклидов, соответствующий минимуму Маундера. Более того, тот факт, что два радионуклида с очень разным геохимическим поведением (углерод и бериллий) имеют сходное распределение в естественных архивах, означает, что это распределение обусловлено именно разной интенсивностью образования, а не влиянием общих, например, климатических факторов [157]. Так было доказано, что минимум Маундера действительно был. Так же можно наблюдать минимумы солнечной активности Дальтона, Шпёрера, Вольфа и Орта, имевшие место в течение прошедшего тысячелетия, причем три последних – ещё до начала астрономических наблюдений числа пятен. По времени они примерно соответствуют Малому ледниковому периоду.

Из-за нехватки фундаментальных знаний вопрос о воздействии солнечной активности на климат оставался вне сферы внимания и климатологов, и астрофизиков практически до начала 1980-х. Возможно, первая попытка связать два события – минимум Маундера и Малый ледниковый период – была сделана Д. Эдди [181]. Многие исследования весьма убедительно подтверждают связь солнечной активности и климата – более тёплые периоды соответствуют более активному Солнцу. Во многих естественных архивах температурные и «космические» сигналы на удивление хорошо совпадают. В качестве наиболее показательных примеров можно привести изменения толщины ежегодных слоёв озёрных донных отложений в Финляндии [190], размеров Большого Алечского ледника в Швейцарских Альпах [158], содержания тяжёлого кислорода

O в сталагмите из пещеры в Омане [280]. Минимумы Солнца совпадают с температурными аномалиями в пределах последних сотен и тысяч лет, таким образом, влияние солнечной активности на климат можно считать весьма вероятным. Но механизм этого влияния пока не ясен[29 - Существует ряд гипотез, объясняющих взаимосвязь солнечной активности и климата. Согласно наиболее популярной из них, увеличение потока космических лучей в периоды низкой солнечной активности приводит к ионизации атмосферы, росту числа аэрозольных частиц, а значит, более интенсивному образованию облаков [281]. Однако пока взаимосвязь космических лучей и климата однозначно не доказана [285].]. Десять лет назад в журнале Nature [284] была опубликована реконструкция солнечной активности за 11400 лет. Авторы обнаружили, что в последние 70 лет наблюдается аномальное число пятен на Солнце; в прошлый раз такая активность наблюдалась около 8000 лет назад. Возможно, этот фактор вносит значительный вклад в нынешнее потепление. Другим безусловным фактором является рост содержания углекислого газа в атмосфере, поглощающего инфракрасное излучение Земли (парниковый эффект). Сейчас его содержание достигло 400 ppm (частей на миллион), что значительно выше, чем в течение, по крайней мере, полумиллиона лет[30 - Данные по содержанию углекислого газа в атмосфере в течение последних 430 тысяч лет реконструированы путём анализа включений воздуха в лёд Антарктиды [170]. За весь исследованный период эта величина не превышала 280 ppm.].

Чем бы ни были вызваны климатические изменения, они, несомненно, оказывали влияние на ход исторических событий, и этот фактор, судя по всему, недооценен (рис. 1–5). Одним из наиболее известных примеров является Гренландия, оказавшаяся весьма удачным объектом изучения. Во-первых, исторические события, связанные с колонизацией острова, детально зафиксированы в исландских и норвежских документах. Во-вторых, история климата Гренландии, в отличие, скажем, от баренцевоморского региона или Сибири, изучена наиболее подробно, благодаря американским и европейским исследованиям трехкилометровой толщи гренландского ледникового щита, начавшимся в 1961 году.

Рис. 1–5. Важнейшие морские арктические экспедиции с конца XV по начало XX века.

Кабот (1497), Уиллоуби и Ченслер (1553–1555), Фробишер (1576–1578), Пет и Джекмен (1580), Дэвис (1585–1587), Баренц (1594–1597), Гудзон (1607–1611), Баффин (1615), Великая Северная экспедиция (1733–1743), Чичагов (1765–1766), Фиппс (1773), Росс и Парри (1818), Франклин (1845–1850?), Виггинс (1874), Норденшельд (1878–1879), Нансен (1893–1896), Амундсен (1903–1906), Пири (1909), Гидрографическая экспедиция Северного Ледовитого океана (1910–1915).

Также на шкале показаны минимумы солнечной активности. Нетрудно заметить, что большая часть полярных экспедиций пришлась на период активного Солнца

Первые в Арктике

Заселение Гренландии стало одним из этапов экспансии викингов на запад – они постепенно проникли на Оркнейские, Шетландские и Фарерские острова, а в середине IX века открыли Исландию. Первые колонисты отправились туда в 870 году, а к 930 году в Исландии насчитывалось уже около 60 тысяч человек. Именно Исландия впоследствии стала базой для колонизации Гренландии. Гренландия так же стала лишь промежуточным пунктом в экспансии. Уже через несколько лет викинги двинулись дальше на запад, но закрепиться на берегах Америки им не удалось, в первую очередь из-за конфликтов с индейцами. В 1960 году на побережье Ньюфаундленда было обнаружено самое западное из известных поселений викингов – Л’Анс-о-Медоуз. Найденные при раскопках артефакты соответствуют более ранним находкам, сделанным в Гренландии, и подтверждают, что викинги побывали на американском континенте примерно за 500 лет до Колумба. Гренландцы продолжали посещать Америку (по-видимому, побережье Лабрадора) на протяжении нескольких столетий, они плавали туда за строительным лесом.
<< 1 2 3 4 5 6 7 ... 9 >>
На страницу:
3 из 9

Другие аудиокниги автора Рамиз Автандилович Алиев