Оценить:
 Рейтинг: 0

Действуй, мозг! Квантовая модель разума

Год написания книги
2021
<< 1 ... 15 16 17 18 19 20 21 22 23 ... 33 >>
На страницу:
19 из 33
Настройки чтения
Размер шрифта
Высота строк
Поля

Павлов ввёл понятие «второй сигнальной системы», свойственной только человеку. И тем самым придал рефлекторной теории вид полного описания мозга без использования терминологии предыдущей модели и отсылок к ней.

Учёный рассуждал примерно так.

У развитых животных (допустим, собак) есть безусловные (выделение слюны на кусок мяса во рту) и условные рефлексы (то же выделение слюны, но натренированное, скажем, на звонок).

Однако у человека, наряду с этими двумя, есть ещё и третий тип рефлексов. Слюна может появиться на «сигнал о сигнале» – например, картинку с изображением куска мяса. Мозг собаки на такой сигнал не реагирует, а человеческий – ещё как.

Следовательно, нейроны коры нашего мозга формируют ещё более сложные условные рефлексы – т.н. «условные рефлексы второй сигнальной системы». Для этого им надо объединяться в устойчивые очаги возбуждения, что является физиологической основой представлений и/или психических образов.

Эти образы, в свою очередь, могут соединяться, дополнять друг друга, накладываться и т. д. У животных образов-картинок в мозге нет, потому что нет ресурса для таких супер-рефлексов. А у человека есть: огромное число интернейронов в коре больших полушарий головного мозга.

Академик Павлов экстраполировал описанные им «условные рефлексы второй сигнальной системы» на всё человеческое поведение. В 1916—17 гг. он выступил с рядом публичных докладов, в которых рассказал о «рефлексе цели» и «рефлексе свободы».

Под первым он понимал ни много ни мало универсальный инстинкт к жизни. В подтверждение приводил пример человеческой тяги к собиранию чего-либо (академик сам был заядлым коллекционером): «Ведь коллекционировать можно всё, пустяки, как и всё важное и великое в жизни: удобства жизни (практики), хорошие законы (государственные люди), познания (образованные люди), научные открытия (учёные люди), добродетели (высокие люди) и т.д.».

«Рефлекс свободы», по Павлову, есть врожденное стремление к преодолению разнообразных препятствий. Сообщая об одном случае с собакой, на примере которой он рассуждал о «рефлексе свободы», учёный не удержался от более широкого обобщения. Он заявил, что людям, например, в их политической деятельности, тоже свойственно испытывать «рефлекс свободы». Который, впрочем, всегда борется с «рефлексом рабства».

Довольно быстро у специалистов типа Сеченова и Павлова – физиологов и нейрофизиологов – появились конкуренты. Тоже специалисты и тоже приверженцы «естественнонаучной» картины мира.

Их стали называть «психологами» и «психиатрами». Они предложили свою версию мозга-машины.

Самый известный из них – Зигмунд Фрейд, ставший основоположником целого направления в психологии и психиатрии.

Это т. н. «динамический» (от др.-греч. dynamis, означающего «сила»; имелись в виду мощные психические силы, обитающие в глубинах бессознательного) подход, популяризированный благодаря прикладному методу лечения психических расстройств, психоанализу.

Психиатр Фрейд так же, как нейрофизиолог Павлов, полагал мозг трёхмерной машиной.

Всё своеобразие которой сформировано средой (базовый конфликт, т.н. «Эдипов комплекс», по Фрейду, присущ каждому человеку и возникает у ребёнка при контакте с родителями или замещающими их фигурами). Ведь и конфликт в тёмных недрах бессознательного, и вполне различимый «сигнал о сигнале» невозможны без внешнего, социального, взаимодействия.

Примечательно, что Фрейд в своих поздних работах развивал идею противопоставления «влечения к жизни» и «влечения к смерти»,

 а также широко интерпретировал описанный им конфликт между бессознательным и реальностью в контексте общественных отношений и культуры.

Напрашивается явная аналогия с рефлексами свободы, рабства и цели в изложении Павлова.

По мере распространения и утверждения теории о машиноподобном мозге, когнитивные специалисты чувствовали себя всё увереннее. Они составляли собственную профессиональную касту и всё меньше нуждались в помощи фундаментальной науки: среди них всё реже встречались те, кто разбирался в физике и математике.

Великий учёный Герман фон Гельмгольц, которого в равной степени можно назвать физиком, математиком, физиологом и врачом, был научным наставником Вильгельма Вундта (того самого, кто организовал первую в мире лабораторию экспериментальной психологии – см. главу 2) и Ивана Сеченова.

Кроме фон Гельмгольца, Сеченов стажировался у известного физика и физиолога Эмиля Генриха Дюбуа-Реймона, брат которого Пауль Давид был не последним европейским математиком.

Иван Павлов, восхищавшийся трудами Сеченова, был учеником Вундта. Зигмунд Фрейд учился у невропатолога и психиатра Жана-Мартена Шарко, возглавлявшего знаменитую клинику для душевнобольных Сальпетриер, и чрезвычайно часто ссылался на объёмные труды того же Вундта.

Однако, если Сеченов и Вундт – физиологи, то Павлов и Фрейд – уже более узкие специалисты.

Так же, как другие ученики Вундта: психиатр Эмиль Крепелин (сформулировал классификацию психических расстройств, принципы которой используются по сей день) и психолог Гуго Мюнстерберг (изобретатель «психотехник», основоположник прикладной профессиональной психологии в США).

Как и ученики Шарко – психиатр Эйген Блейлер (автор терминов «шизофрения» и «аутизм») и невролог Жозеф Бабинский (описал многие патологические симптомы и синдромы).

«Естественнонаучные» толкователи мозга неустанно бомбардировали обывателей новейшей терминологией и, в случае поломки объекта, составляли инструкцию для его починки.

Одни специалисты говорили о «высшей нервной деятельности», другие – о загадочных, обитающих в бессознательном, «силах». «Соматики» спорили с «психиками», материалисты – с идеалистами, физиологи – с психологами, социалисты – с дегенеративистами, неврологи – с психиатрами, теоретики – с экспериментаторами.

Но, как бы ни кружилась от обилия предложений голова, спрос всё равно оставался высоким. Нюансы вторичны. Существенно, что центральный тезис «мозг – это машина» овладел умами (см. табл. 4).

Итак, в начале XX века наибольшее признание получили две версии «естественнонаучного» описания мозга: рефлекторная теория и психоаналитическое толкование. В обеих трактовках отчётливо просматриваются три измерения:

– Биологическое (в интерпретации Сеченова-Павлова – безусловные рефлексы, у Фрейда – бессознательные инстинкты).

– Социальное (в обеих версиях – среда).

– Психическое (у нейрофизиологов – «высшая нервная деятельность», у психоаналитиков – «Эго» или просто «Я»).

Триумф и кризис

Теория о механическом мозге, почти полностью зависящем от среды, стала плодом деятельности специалистов – вознесла их на вершину общественного триумфа, обеспечила им долгий «золотой век».

Но, как известно, за всяким возвышением неминуемо наступает спад.

Между прочим, привычка всюду, где нужно и не нужно, внедрять модную специализацию и машинизацию сделалась предметом критики уже в конце XIX века.

В романе Фёдора Достоевского «Братья Карамазовы» один из персонажей иронично рассуждает: «Совсем, совсем, я тебе скажу, исчез прежний доктор, который ото всех болезней лечил, теперь только одни специалисты и всё в газетах публикуются. Заболи у тебя нос, тебя шлют в Париж: там, дескать, европейский специалист носы лечит. Приедешь в Париж, он осмотрит нос: я вам, скажет, только правую ноздрю могу вылечить, потому что левых ноздрей не лечу, это не моя специальность, а поезжайте после меня в Вену, там вам особый специалист левую ноздрю долечит».

Более мрачный юмор мы находим в рассказе Герберта Уэллса «Бог Динамо» («The Lord of Dynamos», 1894 год), где по сюжету представитель примитивной культуры, незнакомый с электрическими машинами, настолько напуган и одновременно восхищён одной из них, что обожествляет её. Он решает, что «Великое Динамо» требует жертвы и, как ни печально, приносит её – незадачливого техника, взявшегося обучить дикаря.

Опрометчиво доверять оценку научных теорий художникам. Часто, несмотря на гениальность дарования, они пристрастны и не обладают нужным уровнем знания.

Об успешности теории следует судить по её следствиям. И не только прямым, в своей области, но и косвенным – по плодотворности идей, которые эта теория предоставила другим областям познания.

Вот пример из физики.

До публикации Джеймсом Максвеллом в 1873 году теории электромагнетизма учёные довольно смутно представляли природу бытия.

Кто-то верил в атомы, кто-то – в магнетические флюиды. Но большинство было убеждено в том, что всё пространство Вселенной заполнено неосязаемым эфиром (в этом они, между прочим, следовали заблуждениям Декарта: что само по себе опровергает существование т.н. «универсальных гениев»).

Максвелл объяснил электромагнитные явления, сделав это в строгой математической форме. Он позаимствовал у другого учёного, физика Майкла Фарадея, догадку о существовании электромагнитного поля. А затем предположил, что имеют место колебания упругого эфира – электромагнитные волны.

Прямым следствием теории Фарадея-Максвелла стало то, что генераторы постоянного тока (те самые «динамо-машины», что впечатлили несчастного дикаря из рассказа Уэллса) были заменены на более эффективные устройства – генераторы переменного тока.

Вдохновлённый успехом Максвелл попытался подступиться к объяснению природы бытия, исходя из универсальности электромагнитных феноменов. И потерпел неудачу. Т.к. по-прежнему верил в эфир: его модель микромира казалась чересчур громоздкой и неуклюжей.

Из описания Максвелла не следовало, что носителем электрического заряда является частица.

Однако именно это предположил в 1897 году физик Джозеф Джон Томсон. По его мнению, причиной электромагнитных волн была эта гипотетическая частица, а не колебания эфира. Проведя ряд опытов (за которые в 1906 году был удостоен Нобелевской премии), Томсон доказал свою гипотезу. Частицу назвали «электрон».

Тогда учёным пришло в голову, что, возможно, атомарная природа бытия – объяснение получше, нежели теория эфира. И, следовательно, необходимо вообразить, как атомы устроены.

Сам Томсон предложил модель атома, известную как «пудинг с изюмом» (атом представляет собой положительно заряженную сферу, в которую вкраплены равномерно распределенные электроны).
<< 1 ... 15 16 17 18 19 20 21 22 23 ... 33 >>
На страницу:
19 из 33