Оценить:
 Рейтинг: 0

Действуй, мозг! Квантовая модель разума

Год написания книги
2021
<< 1 ... 26 27 28 29 30 31 32 33 >>
На страницу:
30 из 33
Настройки чтения
Размер шрифта
Высота строк
Поля

Джордж Буль, попытавшись облечь законы мышления в математическую форму, указал на возможность вывода аксиом – общих истин, на которые впоследствии можно опереться при построении цепочки доказательств.

В подглаве о бинарной логике мы обозначили одну из таких аксиом: закон снятия двойного отрицания. В математике этот закон преобразуется в порядок доказательств, известный как «доказательство от противного».

Например, требуется доказать, что 17 – нечётное число.

Допустим, что 17 – чётное число (отрицание). По определению чётных чисел, 17 должно делиться на 2 без остатка. Выполнив деление, получаем остаток. Значит, 17 не является чётным числом (отрицание отрицания) и является нечётным числом (снятие двойного отрицания = истина).

На самом деле, конечно, нечётность числа 17 следует из его определения: доказательство от противного кажется лишним. Но тут важно зафиксировать, как работают аксиомы в математике и в логике. Иногда, для более сложных случаев, удобнее идти в обход.

Математик Георг Кантор в 1891 году предложил первую версию теории множеств. Об этой теории мы поговорим подробнее в главе 6. А здесь укажем на некоторые её особенности в связи с бинарной логикой.

Вообще для бинарной логики существует простейшее множество {0; 1}, в котором всего два элемента: 0 и 1. Из этого множества можно построить четыре бинарные последовательности: 1,1; 0,1; 1,0; 0,0.

В теории множеств последовательность элементов и их значение не играет никакой роли. Например, множества {0; 1} и {1; 0} равны (эквивалентны).

В логике и в генетике, как мы убедились, это не так. Важно не только сочетание элементов, но и смысл, который мы им присваиваем (например, «1» может быть «истиной» или «рецессивным признаком»).

Однако важнейшее достоинство теории множеств состоит в её универсальности.

Множества могут быть любыми: конечными, как {0; 1}, и бесконечными – если, например, взять ряд натуральных чисел. Из этого, более мощного, множества можно построить те же четыре бинарные последовательности.

Следовательно, одни множества являются подмножествами других множеств: более мощных, конечных и бесконечных. Тогда, например, все возможные логические высказывания есть подмножество всех высказываний на данном языке, а все гены человека – подмножество всех генов человечества.

Некоторые математики были настолько очарованы теорией множеств, что посчитали возможным создать универсальную аксиоматическую математику (и логику заодно). Их назвали «формалистами».

К ним принадлежал, например, великий математик Давид Гильберт, попытавшийся обосновать тезис о существовании в математике абсолютных истин и/или аксиом. Если б замысел Гильберта удался, то вывод математических теорем в наши дни стал бы рутинным заданием в младшей школе.

С формальным подходом не согласились «интуиционисты», посчитавшие абстракции вроде бесконечных множеств бесполезными развлечениями и требовавшие конструирования цепочек непротиворечивых доказательств любых математических объектов.

Такой взгляд, в частности, выражал другой величайший математик – Анри Пуанкаре. Начальной точкой рассуждений он признавал догадку. Которая выносилась на суд коллег-учёных и, если они с ней соглашались, становилась конвенцией. Само собой, что конвенция никакой абсолютной истиной не является (это результат договорённости, подобно тому, как Джордж Буль предлагал прежде всякого исследования определить, что считать фактом). Но это несущественно, так как догадка в любом случае будет подвергнута проверке.

Таким образом, у формалистов закон снятия двойного отрицания и доказательство от противного считались аксиомами, а у интуиционистов не считались таковыми.

Условно говоря: спорили о том, можно или нельзя при разборе классического силлогизма опровергнуть/вычислить высказывание «Все не люди не смертны». При том, что «Все люди смертны» – истина.

Или: число 17 – нечётное по определению (мы договорились считать его таковым), или оно нечётное, потому что это можно доказать от противного (принимаем закон снятия двойного отрицания как абсолютную истину).

Дискуссия заставила математиков задуматься над более серьёзной проблемой: говоря о вычислимой или невычислимой истине, что мы подразумеваем под вычислением?

Состоит ли математика в действительности из дискретных кусочков-высказываний, которые мы комбинируем в разнообразные аксиомы и теоремы?

Или, скажем, под законом снятия двойного отрицания есть более фундаментальный, логический или математический, закон?

В 1931 году математический вундеркинд Курт Гёдель обнародовал свою знаменитую «теорему о неполноте арифметики».

Её следствия, в общем и целом, дали ответы на сформулированные выше вопросы. А эти ответы, в свою очередь, обеспечили неизбежность создание главного символа цифровой парадигмы – компьютера.

Существует несколько формулировок теоремы Гёделя. Ещё больше – изложений её доказательства. И совсем много – её следствий.

Ограничимся кратким пересказом, основанным на анализе теоремы выдающимся математиком Юрием Маниным (подробности см. в его работах

).

Формулируется теорема так: «Полного финитно описываемого набора аксиом в арифметике не существует».

Это утверждение можно выразить иначе, на более привычном языке.

Например:

Можно построить логически непротиворечивую теорию, но нельзя доказать её истинность.

Тогда такое следствие:

Какими бы логичными ни казались, скажем, концепция души или рефлекторная теория мозга, нельзя сформулировать аргументы в пользу того, что они неопровержимо верны.

Или такая формулировка теоремы:

Выразить полностью какую-либо сложную научную теорию при помощи средств любого естественного языка невозможно.

И её следствие:

Если вы не разбираетесь в математике и не собираетесь этого делать, то в случае создания новой научной теории (например, Теории Всего) вы её никогда не поймёте.

Чтобы пояснить, почему формулировка и следствия теоремы Гёделя, выходят так далеко за пределы арифметики, разберёмся с терминами.

Все высказывания (как в математике, так и в любом естественном языке) могут быть неопределёнными и определёнными. О первых сказать, ложны они или истинны, нельзя. О вторых – можно.

Некоторой аналогией тут служит различие между открытыми и закрытыми вопросами. Если вам задают открытый вопрос (начинается с «как», «что такое», «почему» и т.п.), вы не можете содержательно и определённо ответить, сказав «да» или «нет». Однако при ответе на закрытый вопрос («так ли это?», «это случилось там-то?» и т.д.) только эти два варианта имеют смысл.

Таким образом, Гёдель заключил, что все аксиомы в математике – это определённые истинные высказывания (мы назовём их «первичными истинами»). А все, следующие из них высказывания, выраженные на каком-либо естественном языке, – определённые и истинные тоже («вторичные истины»).

Тогда формируются два множества: все «первичные истины» (множество с числом элементов n) и все «вторичные истины» (множество с числом элементов m).

Сформулированный Гёделем вопрос заключается в следующем: можно ли – всегда и во всех случаях – из «вторичной истины» вывести «первичную истину»?

Или так: содержатся ли в наших естественных языках уже все аксиомы, которые мы ещё не успели описать на языке математики?

Короче: существует ли такая формула (способ, правило), которая всегда выводит n из m?

И совсем коротко: n = m?

Курт Гёдель использовал доказательство от обратного и начал с предположения, что n = m. Примерная схема рассуждений представлена на рисунке 10.

Получилось, что всегда и строго n> m.

Итак, Гёдель доказал, что абсолютных, сформулированных людьми, истин не существует: ни в математике, ни, тем более, в естественных языках (интуиционисты удовлетворенно кивнули).

Вместе с тем, он ясно показал, что существует некий, возможно, универсальный процесс создания аксиом – как в математике, так и в естественных языках (формалисты продолжили верить).
<< 1 ... 26 27 28 29 30 31 32 33 >>
На страницу:
30 из 33