Оценить:
 Рейтинг: 0

Ключевые идеи книги: Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность. Эрик Тополь

Автор
Год написания книги
2021
Теги
На страницу:
1 из 1
Настройки чтения
Размер шрифта
Высота строк
Поля
Ключевые идеи книги: Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность. Эрик Тополь
Smart Reading

Smart Reading. Ценные идеи из лучших книг
Этот текст – сокращенная версия книги Эрика Тополя «Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность». Только самые ценные мысли, идеи, кейсы, примеры.

Искусственный интеллект проникает в нашу жизнь все дальше: подсказывает кратчайшие маршруты, переводит тексты, помогает совершать покупки, находить врачей и лекарства. А главное, ИИ умнеет с каждым днем. Значит ли это, что машины вот-вот найдут спасение от рака и диабета, а врачи при постановке диагнозов будут обязательно советоваться с искусственным разумом? Стоит ли верить оптимистичным прогнозам футурологов? Или же правы те скептики, которые считают, что ИИ далеко не всесилен и вряд ли в обозримом будущем что-то глобально изменит в медицине? Не лучше ли побеспокоиться о личных данных, которые, попав в Сеть, мгновенно окажутся в руках хакеров? Правда, как водится, где-то посередине, и ее знает Эрик Тополь, врач с мировым именем, посвятивший годы анализу возможностей ИИ в медицине.

Smart Reading

Ключевые идеи книги: Deep-медицина. Как искусственный интеллект может вернуть здравоохранению человечность. Эрик Тополь

Оригинальное название:

Deep Medicine: How Artificial Intelligence Can Make Healthcare Human Again

Автор:

Eric Topol

Врачи и компьютеры: кто кому помогает?

Это уже третья книга Эрика Тополя о том, какой должна стать медицина в ближайшем будущем. В первой, под названием Creative Destruction of Medicine (на русский язык не переведена), речь шла о том, какие возможности открывает перед медиками цифровая реальность XXI века. Во второй «Будущее медицины. Ваше здоровье в ваших руках» Тополь призывал к тому, что пациенты должны иметь куда больший доступ к персональным медицинским данным, чем сейчас. Новая книга о том, как ИИ уже изменил медицину и почему главное изменение еще предстоит.

Для начала разберемся, какие возможности есть у человека, а какие – у машины.

Почему компьютер должен помогать врачам

Оказавшись на приеме у американского врача, вы проведете в его кабинете лишь семь минут (если пришли к нему впервые, задержитесь на пять минут дольше). За это время врач на вас почти не посмотрит: он озабочен заполнением медицинской карты. Карта эта теперь электронная, но это не облегчает работу: разработчики программного обеспечения используют форматы файлов, которые не согласуются с программным обеспечением конкурентов, к тому же, по статистике, до 70 % информации из карты врач просто копирует в новые записи, увеличивая тем самым риск дублирования ошибок.

В то же время у врача есть отличная возможность назначить вам множество анализов, чтобы исключить все проблемные факторы. Многие из них – пустая перестраховка, которая, по подсчетам Национальной академии медицины США, стоит стране $765 млрд в год, или четверть всех расходов на здравоохранение (другое исследование такого рода гласит: 85 % всех дооперационных лабораторных тестов совершенно необязательны!).

20–30 % женщин, обследование которых дало отрицательный результат рака груди, на самом деле уже имели опухоль. Но не менее часто исследования выявляют опухоли, которые не перейдут в агрессивную фазу, так что показанная врачом операция принесет женщине куда больше страданий. И речь идет о каждой третьей пациентке! Дело еще и в том, что маммография не всегда дает точные результаты, и специалисты сами это понимают. Когда 160 врачей попросили определить вероятность рака груди у пятидесятилетней женщины на основании положительной маммографии, те сошлись на 90 %. На самом деле вероятность составляла один из десяти.

Да, врачи ошибаются так же, как и все люди. Этот механизм совершения ошибок описан Нобелевским лауреатом Даниэлем Канеманом[1 - Читайте саммари книги Даниэля Канемана «Думай медленно… Решай быстро».]. Дело в том, что у нас два типа мышления. Первое – интуитивное, автоматическое, быстрое. Второе – логическое, рациональное, медленное. Как легко догадаться, интуитивное мышление всегда опережает логическое. В повседневной жизни это позволяет нам не зависать по любому поводу, но, когда речь заходит о действительно важных решениях вроде постановки диагноза, спонтанность все портит. Именно доверяясь быстрому мышлению, врач:

• формирует свое мнение на основе самых простых и доступных ему примеров, редко задумываясь об особых случаях (так называемое смещение в сторону доступности);

• склонен так интерпретировать информацию, чтобы она совмещалась с его системой взглядов, сколь бы ограниченной та ни была (так называемая предвзятость подтверждения).

Что ж, искусственный интеллект может оказаться здесь неплохим помощником: он не устает, не раздражается, выносит решение только на основе беспристрастного анализа данных, и с каждым годом эти вычислительные операции все дешевле.

Но не все так просто.

Почему врачи должны помогать компьютеру

Искусственный интеллект умеет немало. Еще бы: в его распоряжении:

• море данных (один только YouTube пополняется на 300 часов видео ежеминутно);

• облачные сервисы, где эти данные хранятся и обрабатываются;

• мощные графические процессоры и модули алгоритмической разработки с открытым исходным кодом (TensorFlow у Google, Cognitive Kit у Microsoft и пр.).

До того как прийти на помощь медикам, эти мощности работали в четырех сферах, где достигли немалых успехов:

1) игры (сначала ИИ обыграл человека в шахматы, а недавно и в го, теперь IBM Watson участвует во множестве медицинских исследований, над его обучением работает медицинская школа штата Мэриленд);

2) распознавание образов (в результате сегодня распознавание лиц служит надежным биометрическим паролем в наших смартфонах, медикам же такие программы помогают, в частности, в исследованиях кожи);

3) распознавание речи (десятки языков в интернет-переводчиках, голосовые помощники вроде Amazon Alexa и чат-боты, многие из которых сегодня специализируются и на психологической поддержке пациентов);

4) автомобилестроение (успех беспилотных автомобилей Tesla вдохновляет врачей задумываться о большей автоматизации медицинского оборудования).

А вот методологию ИИ перенести в медицинскую сферу без значимых потерь не так просто:

• чем больше данных получает ИИ, тем эффективнее работает, но эти данные должны быть легкодоступны для поиска, оптимально структурированы и просты в обращении, а медицинские данные в основном не таковы;

Каждый год выходит более миллиона статей по медицине – одна статья каждые 30 секунд. Самые большие обещания по освоению этого океана информации давал суперкомпьютер IBM Watson, триумфально выигравший в телевикторине Jeopardy: реклама 2017 года гласила, что Watson поможет врачу читать 5000 исследований в день и при этом принимать пациентов. Но пока без людей не обойтись: так, проект Mark2Cure привлекает активистов, которые обрабатывают миллионы статей из исследовательской базы данных PubMed, выделяют ключевые понятия и связи между ними, а затем эти результаты обрабатываются статистическими алгоритмами, которые создают оптимальные способы автоматического поиска. Обработанная таким образом информация могла бы стать серьезным подспорьем для системы поддержки принятия врачебных решений (СППВР) – одного из самых многообещающих направлений медицинского ИИ.

• нейросети работают по принципу черного ящика: мы не очень хорошо знаем, как именно сеть обрабатывает информацию внутри себя. Победа AlphaGo в го особенно показательна: создатели признались, что не могут объяснить, как «мыслила» машина. Когда речь идет о лечении пациентов, риск довериться черному ящику слишком дорого стоит;

• нейросети уязвимы перед хакерами: наши данные слишком легко украсть;

• нейросети невольно отражают человеческие заблуждения вроде расизма и сексизма: так, Google убрала из лексикона Google Photos слово «горилла», поскольку механизм распознавания изображений отмечал фото афроамериканцев с очень темным цветом кожи. Что же говорить об объективности медицинских исследований, которые нередко сосредоточены на показателях белой части населения?

Множество статей об успехах искусственного интеллекта в медицинской сфере не только не подтверждены реальными клиническими условиями (они проводились in silico[2 - In silico – то есть путем компьютерного моделирования. Фраза создана по аналогии с in vivo (испытания на живом организме) и in vitro (испытания в пробирке).]), но и публикуются в малоизвестных источниках и не проходят процедуру рецензирования.

Помимо методологических трудностей существуют этические и социальные проблемы. На создание новых алгоритмов могут влиять не только медики, но и представители страховых компаний, а у них свои, циничные интересы. И как быть с тем, что ИИ угрожает сокращением 40 % рабочих мест в сфере здравоохранения? Плохая новость для США, где в этой сфере занята 1/6 часть населения.

Искусственный интеллект на службе у медицины

Как ИИ умеет работать с паттернами

Поскольку ИИ умеет очень быстро делать выводы на основе огромного количества данных, особенно хорошо структурированных, первыми на хорошие новости могут надеяться травматологи, радиологи, патологоанатомы, то есть врачи, которые работают с паттернами – моделями с повторяющимися закономерностями вроде рентгенограмм и прочих медицинских снимков. Тут у ИИ несколько явных преимуществ перед докторами.

• ИИ точнее. Если предоставить машине 50 тысяч рентгеновских снимков грудной клетки, она сможет распознавать на них патологию с точностью в 95 %, не заменяя рентгенолога, но существенно облегчая ему работу по сортировке снимков. Оценивая рентгенограммы переломов тазобедренного сустава, ИИ столь точен, что заменяет более дорогие методы сканирования типа МРТ; нейронная сеть, обученная более чем на 1000 пациентов, показала 99 % точность, сопоставимую с опытом рентгенологов. Компания Zebra Medical Vision протестировала нейронную сеть, которая обнаруживает компрессионные переломы позвонков с 93 % точностью, тогда как рентгенологи пропускают такие переломы более чем в 10 % случаев. Разница в 3 % не так уж велика, но она имеет значение, когда речь идет о людях.

В совместном исследовании компаний Moorfields и DeepMind, включающем более 14 тысяч снимков, автоматизированный анализ десятков глазных патологий не уступал в точности анализу экспертов. При этом ИИ куда чаще, чем врачи, давал показания для более детального обследования у узкого специалиста: вероятность ложной тревоги составила лишь около 1 %, и не было случая, когда ИИ рекомендовал бы пациенту с тяжелым заболеванием простое наблюдение у окулиста, тогда как врачи согласились лишь с 65 % решений о перенаправлении пациентов к узким специалистам.

• ИИ в разы чувствительнее к текстуре и цветопередаче снимка, и это принципиально важно, если речь идет о некоторых геномных аномалиях, связанных с раком мозга. Кроме того, алгоритмы умеют улучшать качество изображения, что позволяет сократить радиационные дозы КТ-сканирования, меньше вредя пациентам и снижая стоимость сканеров;

• ИИ помогает сократить риски: машинная обработка маммографических изображений более чем 1000 пациенток в сочетании с результатами биопсии показала, что более 30 % операций на груди можно было избежать. Алгоритмы Google обнаруживали метастазы с точностью более 92 % по сравнению с 73 % для патологоанатомов при одновременном снижении ложноотрицательного показателя на 25 %. Правда, Google грешил ложноположительными результатами.


На страницу:
1 из 1