Рассмотрим механизм возникновения и основные соотношения, характерные для синусоидальной ЭДС.
Для этого удобно использовать простейшую модель – рамку, вращающуюся с постоянной угловой скоростью в равномерном магнитном поле. Проводники рамки, перемещаясь в магнитном поле, пересекают его, и в них на основании закона электромагнитной индукции наводится ЭДС. Значение ЭДС пропорционально магнитной индукции B, длине проводника l и скорости перемещения проводника относительно поля ?t : е = Bl?t.
Выразив скорость ?t через окружающую скорость ? и угол ?, получим: е = Bl? sin ? = Em sin ?.
Угол ? равен произведению угловой скорости рамки ? на время t: ? = ?t.
Таким образом, ЭДС, возникающая в рамке, будет равна: е = Em sin ? = Em sin ?t.
За один поворот рамки происходит полный цикл изменения ЭДС.
Если при t = 0 ЭДС е не равна нулю, то выражение ЭДС записывается в виде:е = Em sin (?t + y),
где e – мгновенное значение ЭДС (значение ЭДС в момент времени t);
Em – амплитудное значение ЭДС (значение ЭДС в момент времени );
(?t + ?) – фаза;
? – начальная фаза.
Фаза определяет значение ЭДС в момент времени t, начальная фаза – при t = 0.
Время одного цикла называется периодом T, а число периодов в секунду – частотой f:
Единицей измерения частоты является c–1, или герц (Гц). Величина
в электротехнике называется угловой частотой и измеряется в рад/с.
Частота вращения рамки n и частота ЭДС f связаны между собой соотношением:
откуда
13. ЦЕПЬ, СОДЕРЖАЩАЯ КАТУШКУ С АКТИВНЫМ СОПРОТИВЛЕНИЕМ R И ИНДУКТИВНОСТЬЮ L
Реальная катушка любого электротехнического устройства обладает определенным активным сопротивлением r и индуктивностью L. Участок цепи с индуктивностью L будем рассматривать как участок, обладающий индуктивным сопротивлением x
. Уравнение напряжений, составленное по второму закону Кирхгофа для цепи с r и L, имеет вид:U = U
+ U
.
Рис. 15. Цепь, содержащая катушку с активным сопротивлением R и индуктивностью
На векторной диаграмме (рис. 15б) вектор U
совпадает с вектором тока, а вектор U
опережает вектор тока на 90°.
Из диаграммы следует, что вектор напряжения сети равен геометрической сумме векторов U
и U
. U = U
+ U
, а его значение
Выразив напряжения через ток и сопротивления, получим
Последнее выражение представляет собой закон Ома цепи (рис. 15г):
где z – полное сопротивление цепи.
Из векторной диаграммы следует, что напряжение цепи опережает по фазе ток на угол р и его мгновенное значение равно: ? = U
sin (?t + ?).
Графики мгновенных значений напряжения и тока цепи изображены на рисунке 15в.
Угол сдвига по фазе ? между напряжением и вызванным им током определяют из соотношения:
График p
(t) показывает, что активная мощность непрерывно поступает из сети и выделяется в активном сопротивлении в виде теплоты. Она равна:
Мгновенная мощность, обусловленная энергией магнитного поля индуктивности, циркулирует между сетью и катушкой. Ее среднее значение за период равно нулю:
14. ЦЕПЬ, СОДЕРЖАЩАЯ РЕЗИСТИВНЫЙ И ЕМКОСТНОЙ ЭЛЕМЕНТЫ
Участок цепи с емкостью С будем представлять как участок, обладающий емкостным сопротивлением xc.
В этом случае уравнение напряжений цепи (рис. 16а) имеет вид: U = U
+ U
На (рис. 16б) изображена векторная диаграмма цепи r и С.
Рис. 16. Электрическая цепь, содержащая резистивный r и емкостный С элементы (а), ее векторная диаграмма (б), графики мгновенных значений (в), треугольники мощностей и сопротивлений (г и д)
Вектор напряжения U
совпадает с вектором тока, вектор U
отстает от вектора тока на угол 90°. Из диаграммы следует, что модуль напряжения, приложенного к цепи, равен: