Разведка далеких планет
Владимир Георгиевич Сурдин
Мечта каждого астронома – открыть новую планету. Раньше это случалось редко: одна-две за столетие. Но в последнее время планеты открывают часто: примерно по одной большой планете в неделю, ну а мелких – по сотне за ночь! В книге рассказано о том, как велись и ведутся поиски больших и маленьких планет в Солнечной системе и вдали от нее, какая техника для этого используется, что помогает и что мешает астрономам в этой работе. Рассказано, как дают планетам имена и какие открытия ждут нас впереди. В приложении приведены точные данные о планетах, созвездиях и крупнейших телескопах.
Книга предназначена старшеклассникам, учителям и студентам, а также всем любителям астрономии.
Владимир Георгиевич Сурдин
Разведка далеких планет
Отправляясь в разведку
«Сколько планет открыли астрономы?» – вопрос, ответить на который с каждым годом становится все сложнее. Задайте его своим знакомым, и разнобой ответов вас немало удивит. Некоторые, не задумываясь, скажут: «Все знают, что планет девять!» И даже перечислят их без запинки: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун и Плутон. Другие уточнят: «Теперь – восемь: Плутон больше не планета, хотя и не ясно, кто же он теперь такой». Еще более осведомленные из нас, возможно, заметят: «Кажется, теперь планет уже больше дюжины: найдены новые вдали от Солнца, в поясе Койпера». А любители астрономических новостей уточнят: «Если вы имеете в виду вообще все планеты, то их уже открыто несколько сотен, причем большинство – не рядом с Солнцем, а вблизи других звезд». Ну и кто же прав? Сколько планет на самом деле известно сейчас астрономам?
Как астроном, я скажу вам с полной определенностью: точного количества планет уже не знает никто. Раньше знали. С древности и вплоть до середины XVI в. планет было 7. Точнее, 5 «настоящих» планет (Меркурий, Венера, Марс, Юпитер и Сатурн), а также Луна и Солнце, тоже называвшиеся тогда планетами; всего 7. Но после того как Коперник «переместил» центр мира от Земли к Солнцу, Земля тоже стала планетой, так что их полное количество… уменьшилось до 6. Ведь теперь Солнце стало центральным светилом, а Луна – спутником Земли. «Восстановил справедливость» Вильям Гершель, открывший в конце XVIII в. Уран: планет вновь стало 7. В середине XIX в. был открыт Нептун, а спустя век – Плутон. Нынешнее поколение землян с детства знает, что в Солнечной системе 9 планет. Даже сайт в Интернете такой есть, очень известный, называется «Nine planets». Всю вторую половину XX в. астрономы искали десятую планету, а публика с нетерпением ждала этого момента. Наконец открытие состоялось, и планет стало… 8. Астрономы решили, что Плутон и похожие на него тела – не настоящие планеты, а карликовые. Их в Солнечной системе обнаружено уже немало.
Но чтобы тем из нас, кто ожидал открытия настоящей, крупной планеты, не было обидно, астрономы открыли и такие планеты, причем настолько крупные, что даже гигант Юпитер рядом с ними почувствовал бы себя неуверенно. К счастью, эти новооткрытые «супергиганты» обнаружились далеко от нас – в планетных системах иных звезд. В последние годы астрономы открывают в среднем по одной планете в неделю. Хотя известия об открытии новых небесных тел ныне распространяются молниеносно и в Интернете вы без труда обнаружите текущие каталоги любых астрономических объектов, четкой их классификации до сих пор нет, и это затрудняет подсчет объектов того или иного типа. Впрочем, подвижность номенклатурных границ характерна для любой живой, быстро развивающейся науки, а астрономия сейчас развивается стремительно. Каждый год обнаруживаются не только новые объекты, но даже новые классы космических тел и новые важные свойства Вселенной.
В этой книге я ограничусь рассказом о новых планетах, причем под словом «планета» буду понимать более широкий класс объектов, чем это пока делают авторы учебников. Например, мы познакомимся с «планетой Луна», которую «неуважительно» называют спутником планеты Земля. Мы встретимся с планетами Титан и Энцелад (тоже спутниками по официальной номенклатуре), а также с планетами Седна, Квавар, Эрида и их соседями по группе карликовых планет Мы также познакомимся с планетными системами иных звезд. Разумеется, мы узнаем, как ищут новые планеты и как дают им имена.
На первый взгляд может показаться, что открытие новой планеты стало теперь легким делом: в былые времена планету обнаруживали раз в столетие, а ныне – каждую неделю. Мелкие планетки – астероиды – вообще открывают по нескольку сотен за ночь! Но эта легкость обманчива. Современный крупный автоматизированный телескоп стоит больше, чем все телескопы в мире, построенные до начала XX в. Он вобрал в себя самые дорогие технологии современности: оптику, механику, электронику, поэтому и эффективность работы возросла во много раз. Но как раньше, так и теперь открытия делаются на пределе возможностей приборов и человека.
Мне вспоминается одна старая история. На международном конгрессе радиоастрономов в фойе был выставлен журнальный столик, на котором лежали стопкой небольшие листики. Когда подошедший брал бумажку, он мог прочитать на ней следующее: «Подняв этот лист к глазам, Вы затратили больше энергии, чем было собрано всеми радиотелескопами мира за всю историю существования радиоастрономии». Это сообщение порою шокировало самих радиоастрономов. Они искренне удивлялись, как им удалось узнать столько интересного и важного о Вселенной из анализа такого мизерного количества энергии.
Подобно дальнобойному орудию, направленному в бойницу крепостного форта, телескоп защищает Землю от космических угроз. Изучая Вселенную, мы обретаем власть над ней.
Не знаю, получил ли этот пример продолжение, но, безусловно, мог бы. Астрономы-оптики уже давно перешли к измерению света звезд путем счета фотонов. А в таких областях, как рентгеновская и особенно гамма-астрономия, вообще все пойманные кванты учтены поштучно, за каждым из них идет охота. Это же характерно и для физики космических лучей: частиц с предельно высокой энергией за год попадается лишь несколько штук! Правда, от энергии одной такой частицы – например, одного быстрого протона – может перегореть настольная лампа! Ведь кинетическая энергия такой микрочастицы равна энергии теннисного мяча, летящего со скоростью 80 км/час. Но этих сверхэнергичных (и поэтому сверхинтересных) частиц очень мало. Да и попадаются они лишь потому, что «сеть» для их поимки имеет громадные размеры: современные детекторы космических частиц занимают участки порою в тысячи квадратных километров, имеют суммарную поверхность детекторов площадью несколько футбольных полей и содержат активного вещества массой десятки тысяч тонн.
Не только для астрономии характерен гигантизм и дороговизна приборов при скромных количественных характеристиках результатов (в отличие от количества информации, ее качество не поддается измерению). Та же ситуация наблюдается в любой фундаментальной науке. Яркий пример из физики – Большой адронный коллайдер, самый массивный и дорогой прибор в истории человечества, который, возможно, позволит нам обнаружить несколько новых частиц и кое-что прояснит в картине первых мгновений жизни Вселенной. На взгляд обывателя, пользы от этого гигантского ускорителя не больше, чем от гигантского телескопа для поиска планет, на поверхность которых никогда не ступит нога человека. Нужно ли тратить такие усилия на поиск нескольких экзотических элементарных частиц или нескольких явно непригодных для жизни далеких планет? Не лучше ли сосредоточиться на благополучии своей родной планеты? Вопрос риторический: история науки уже давно ответила на него. То, что сегодня выглядит просто интересным для нескольких человек в мире, завтра, возможно, окажется жизненно важным для всего человечества. На войне один разведчик, бывало, обеспечивал успех армии. Наука – та же разведка. Никогда не знаешь, с чем вернешься. Но ни один командир не поведет в бой отряды без предварительной разведки.
Разведчики – это элита армии. Им дают самое лучшее снаряжение и не требуют отчета. Как действовать, разведчик решает сам. От него требуется лишь одно – добыть верную информацию. Современная астрономия – это разведка Вселенной. Наши приборы – лучшие из лучших. Наша задача – проникнуть на предельную глубину в пространстве и времени. И хотя кажется, что космос – это пустота, продвигаться в него не легче, чем в глубины Земли: каждый новый метр дается с большим трудом, чем предыдущий. Космос для нас – и друг, и враг. Чтобы выжить и развиваться, нужно знать о нем всё. Планеты – не самая важная часть Вселенной, прямо скажем, почти незаметная ее часть. Но мы живем на планете и другого варианта пока не видим. Для нас планеты – это важнейшие, жизненно необходимые крупицы Вселенной; недаром раньше планеты называли «мирами». Итак, мы отправляемся на разведку далеких миров.
1. Карта Солнечной системы и ее окрестностей
Отправляясь в путешествие, нужно изучить карту, наметить маршрут, запастись необходимыми приборами и инструментами. В путешествии к планетам наш маршрут проляжет по Солнечной системе и ее окрестностям. Насколько широки эти окрестности, нам еще предстоит выяснить. А начнем мы подготовку к путешествию, разумеется, с карты – с карты звездного неба. Именно на ней показано положение «неподвижных» звезд, настолько далеких от нас, что ни их собственное движение в пространстве, ни движение наблюдателя вместе с Землей и Солнцем даже за тысячи лет не могут заметно изменить их взаимное положение. Разумеется, астроном с телескопом в результате кропотливых наблюдений иногда замечает эти перемещения, но для невооруженного глаза они совершенно незаметны: посмотрев сегодня на небо, вы увидите такой же звездный рисунок, какой видели Галилей, Аристотель, строители египетских пирамид и даже неандертальцы.
Пути планет на фоне звезд
Впрочем, на фоне неизменной декорации звездного неба некоторые светила довольно быстро меняют свое положение. Легче всего убедиться в этом, наблюдая за Луной: всего лишь за несколько часов (а при наблюдении в бинокль – за несколько минут) Луна заметно перемещается относительно звезд. Вообще-то Луна движется в пространстве не очень быстро: ее орбитальная скорость вокруг Земли около 1 км/с. Но близость к Земле делает движение Луны заметным: относительно неподвижных звезд она смещается на 13° в сутки, то есть на 0,55° в час. А это чуть больше видимого диаметра лунного диска. Поэтому заметить движение Луны на фоне звезд очень легко.
Значительно сложнее заметить движение Солнца. Обходя его за год по орбите Земли, мы видим солнечный диск в проекции на разные участки звездного неба. Точнее, это видят космонавты, работающие за пределами земной атмосферы, а мы с вами, живя на дне воздушного океана, видим диск Солнца на неизменном фоне голубого неба, да и то лишь в безоблачную погоду. Космонавт без труда может заметить, что солнечный диск ежесуточно смещается относительно звезд примерно на 1° (делим 360° на 365 дней в году). За год Солнце описывает на фоне звезд большой круг – эклиптику, проходя в основном на фоне созвездий Зодиака. Впрочем, за тысячи лет до появления космонавтов этот факт установили древние астрономы, наблюдавшие звездное небо после заката или перед восходом
Солнца. Они даже изобразили эклиптику на своих звездных картах. Орбита Земли очень стабильна, поэтому и видимый путь Солнца на фоне звезд остается практически неизменным.
Таблица 1.1
Зодиакальные созвездия
Казалось бы, еще проще изобразить траекторию Луны, слабый свет которой почти не мешает нам видеть рядом с ней звезды. Но вы нигде не найдете карту звездного неба с нанесенной на ней траекторией Луны. Почему? Причин несколько. Во-первых, под действием притяжения Солнца и Земли (причем первое из них вдвое сильнее второго) Луна движется по замысловатой орбите, ориентация и плоскость которой быстро изменяются. Расчет движения Луны – одна из сложнейших задач небесной механики. Разумеется, сегодня она решена, но нет смысла рисовать на звездной карте орбиту, которая постоянно меняется. Если искать аналогию с географическими картами, то Солнце можно сравнить с поездом, а Луну – с кораблем: неизменный железнодорожный путь изображен на карте четко, а путь корабля даже регулярной линии намечен лишь приблизительно, ибо зависит от ветров и течений.
Впрочем, есть и вторая причина, по которой путь Луны не наносят на карту неба: Луна настолько близка к Земле, что для жителей разных континентов ее видимое положение на небе заметно различается – это называют эффектом параллакса. Например, если один наблюдатель находится в Арктике, а другой в Антарктике, то для них различие в видимом положении Луны относительно звезд достигает 1,5°, т. е. трех лунных дисков! Для каждого из земных наблюдателей потребовалась бы своя карта лунной траектории. Именно поэтому ее и не рисуют на общедоступных картах звездного неба. Нужно лишь помнить, что Луна всегда видна недалеко от эклиптики, поскольку удаляется от нее то в одну, то в другую сторону не более чем на 6°, а значит, почти не покидает зодиакальных созвездий.
В те моменты, когда Луна пересекает эклиптику, она иногда встречается там с Солнцем. Собственно говоря, само слово «эклиптика», обозначающее видимый годичный путь Солнца на небе, происходит от греческого ekleipsis — затмение – и отражает тот факт, что солнечные и лунные затмения наблюдаются только при попадании Луны на эту линию.
Созвездия (дополнительные к зодиакальным), в которых бывает Луна
Возничий
Кит
Ворон
Змееносец
Орион
Секстант
Орбитальные плоскости больших планет – от Меркурия до Нептуна – тоже лежат недалеко от плоскости эклиптики, поэтому и планеты всегда видны практически в той же полосе Зодиака, что и Луна: ±8° от линии эклиптики. Траектории их перемещения относительно звезд выглядят замысловато, поскольку мы наблюдаем движущуюся планету с движущейся Земли. Но орбиты планет известны очень точно, так что рассчитать видимую траекторию планеты на годы вперед несложно.
Созвездия (дополнительные к зодиакальным и «лунным»), в которых бывают большие планеты
Малый Пес
Чаша
Гидра
Пегас
Щит
Змея
В ежегодных астрономических календарях траектории планет отмечены на картах звездного неба. Но если это невозможно для Луны, то почему возможно для планеты? Да потому, что даже соседние планеты – Венера и Марс – не приближаются к Земле менее чем на 40 млн км, а это в 100 раз больше, чем расстояние до Луны. Поэтому и параллакс в 100 раз меньше: если для наблюдателей в Арктике и Антарктике диск Луны смещается на 1,5°, то положение любой планеты сместится не более чем на Г. Для невооруженного глаза этот угол практически незаметен. Если не проводятся особо точные наблюдения, то можно считать, что на видимое положение планет при их наблюдении из разных точек Земли эффект параллакса не влияет. То же справедливо и для Солнца: для него угол параллакса не превышает 18?. Поэтому и рисуют траекторию Солнца на звездных картах в виде линии эклиптики, толщина которой на карте значительно больше, чем этот маленький угол параллакса.
А теперь познакомимся поближе с самой картой звездного неба, на фоне которой происходит движение планет.
Имена и границы созвездий
Мы не удивляемся, называя имена городов и улиц: «Москва», «Ростов», «улица Профсоюзная», «улица Шарикоподшипниковская». Люди построили города, проложили улицы и дали им такие оригинальные имена. Чтобы не заблудиться.
Но вот наступает ночь – теплая, ясная и безлунная августовская ночь. Мы с друзьями выходим во двор и смотрим на звездное небо. Кто-то радостно восклицает: «А вон там – Большая Медведица!» Строгий голос добавляет: «А над ней – Малая». «Вижу, вижу! – восклицает жизнерадостный. – А справа от Малой Медведицы буква М на боку лежит – это Кассиопея». «Правильно, – подтверждает строгий и, чтобы окончательно сразить всех своей эрудицией, добавляет: – А между Большой Медведицей и Кассиопеей – Жираф». «Правда? – удивляются все, не в силах разглядеть в указанном месте на блеклом городском небе ни одной звезды. – А откуда ты знаешь?»
В самом деле – откуда? Кто провел границы на небесах, кто и когда дал имена планетам, звездам и созвездиям (порою даже таким, в которых и звезд-то не видно!)? У всех ли народов эти имена одинаковые и можно ли их изменить, если они кажутся нам неблагозвучными? И самое интересное – кто имеет право давать имена миллионам пока еще безымянных звезд и планет? Эти действительно интересные вопросы в последние годы стали еще и злободневными, поскольку некоторые ловкие граждане начали продавать имена звезд и, возможно, скоро доберутся до планет. Законно ли это?
Попробуем разобраться в невидимых границах на небе и загадочных именах небесных светил. Для начала уточним, что такое созвездие. Русское слово «созвездие», вероятно, родилось как перевод латинского constellatio — группа звезд. В древности созвездиями называли выразительные группы ярких звезд, которые позволяли людям легче запоминать узор звездного неба; он помогал ориентироваться в пространстве и во времени путешественникам – морским и сухопутным, а некоторым помогает и сегодня.
В те далекие времена еще не существовало строгих границ между соседними созвездиями. К тому же у каждого народа были свои традиции распределения звезд по созвездиям. Современные астрономы навели в этом деле порядок: в первой половине XX в. они разделили все небо на 88 созвездий, проведя между ними строгие границы. Имена созвездиям и ярким звездам в них дали в соответствии с традициями европейской и ближневосточной культур. На вопрос, почему созвездий именно 88, никто точно ответить не сможет. Но вполне понятно, почему их не 8 и не 888: при малом количестве созвездия были бы бесполезны для ориентации, при слишком большом – сложны для запоминания. Можно вспомнить, что в интеллектуальных играх (шашки, шахматы, карты) также не более сотни элементов. Например, на шахматной доске 64 клетки и 32 фигуры, на шашечной доске от 64 до 144 клеток, колода игральных карт содержит от 32 до 54 разных карт. Видимо, эти числа указывают на ресурсы нашего мозга.