Оценить:
 Рейтинг: 0

Статистический анализ взаимосвязи. Учебное пособие

Год написания книги
2019
<< 1 2 3 4 5 >>
На страницу:
2 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

Варианты заданий представлены в таблице ниже. Здесь мы используем следующие условные обозначения.

X – факторный признак, или фактор, или независимая переменная. Мы моделируем Х как случайную величину с РАВНОМЕРНЫМ РАСПРЕДЕЛЕНИЕМ в указанном диапазоне.

E – случайная составляющая. Будем моделировать Е как случайную величину со СТАНДАРТНЫМ НОРМАЛЬНЫМ РАСПРЕДЕЛЕНИЕМ, то есть с нулевым средним и единичной дисперсией.

Y – результативный признак, или результат, или зависимая переменная. При моделировании мы вычисляем Y по формуле, в которой участвуют фактор X и случайность E. Коэффициент при случайной составляющей определяет её СИГМУ (стандартное отклонение) и, соответственно, разброс вокруг среднего.

n – объём выборки. Это количество изучаемых объектов (статистических единиц), например, людей, квартир или жёстких дисков. У каждого объекта будут свои значения X и Y. Например, у каждого человека будет своя пара значений: роста и вес. Можно сказать, что в нашем случае объём выборки – это число строк в таблице с данными, или число записей в базе данных, или КОЛИЧЕСТВО ПАР случайных чисел {X, Y}. Для каждого объекта будет своя пара чисел Х и Y. В нашей работе объём выборки равен 200 для всех вариантов.

Оформление отчёта подробно описано в предыдущем выпуске серии. Создадим новую рабочую книгу. Сохраним отчёт в файле с коротким информативным названием. Сделаем титульный лист отчёта и заготовку оглавления.

В данной работе мы будем вначале рассматривать линейную функцию, а затем нелинейную. Соответственно, у нас имеется две таблицы с вариантами заданий.

Выберем свой вариант задания и опишем его на новом листе отчёта.

Зарисовка линейной функции

Вначале надо представить себе, что представляют собой наши данные, как будет выглядеть график. Для этого сделаем зарисовку на бумаге – как в предыдущей работе.

Нам предстоит изобразить расположение нашей линии и форму диаграммы разброса – в самых общих чертах.

Зарисовка диаграммы разброса

Изобразим оси координат и займём нужное место на листе бумаги.

Масштаб на графике необязательно должен начинаться от нуля. Главное, чтобы диаграмма разброса занимала всё поле графика. Метки на осях – «красивые», круглые числа.

В нулевом варианте задания X изменяется в пределах от 1000 до 2000. По оси «икс» указываем крайние значения 1000 и 2000 в начале и конце оси.

Теперь оценим диапазон значений Y. Берём формулу для Y, пока без учёта случайности Е:

Y = 1400 +0,065 · X

Подставляем крайние значения X:

Y (1000) = 1400 +0,065 · 1000 = 2050

Y (2000) = 1400 +0,065 · 2000 = 2700

Выбираем масштаб по оси «игрек» от 2000 до 3000.

Получаем 2 точки, через них проводим прямую линию.

Добавим разброс вокруг линии. Для этого используем ПРАВИЛО ТРЁХ СИГМ: почти все значения случайной величины находятся в диапазоне «среднее плюс-минус три сигмы». Когда мы строим разброс вокруг линии, в роли среднего значения будет точка на линии.

В нулевом варианте случайный разброс равен 50 · Е. Случайная составляющая Е имеет единичную дисперсию. Сигма Е тоже будет равна единице, потому что сигма – это квадратный корень из дисперсии. Если умножить случайную величину Е на 50, то её сигма тоже увечивается в 50 раз. Стало быть, сигма равна 50, а три сигмы равно

3 · 50 = 150.

Вокруг первой и последней точек на графике строим разброс «плюс-минус три сигмы».

2050 – 150 = 1900

2050 +150 = 2200

2700 – 150 = 2550

2700 +150 = 2850

Проводим пунктиром две параллельные линии. Это будут границы случайного разброса.

Заполняем эту «полосу» точками – случайным образом.

Вот что мы ожидаем увидеть, когда смоделируем исходные данные – см. рисунок.

Зарисовка

Зачем в этой работе мы делаем зарисовку? При любых вычислениях нужно уметь ЗАРАНЕЕ ОЦЕНИВАТЬ и МЫСЛЕННО ПРЕДСТАВЛЯТЬ себе будущие результаты. Тогда сразу будут видны ГРУБЫЕ ОШИБКИ. И эти ошибки можно будет сразу же выявить и исправить. Ну а ошибки будут всегда.

Если не оценивать будущий результат, то можно легко сказать: «Это компьютер так посчитал». Проблема в том, что исходные данные вводит человек и результаты будет использовать тоже человек. Программу тоже написал человек, и не один. Поэтому ОТВЕТСТВЕННОСТЬ за результаты расчётов несёт не компьютер, а человек.

Зарисовка нелинейной функции

Вторая часть задания – это нелинейная функция второго порядка. Варианты заданий приводятся в таблице. Другие названия: квадратичная функция, парабола – см. формулу.

Уравнение параболы можно записать разными способами, поэтому нужно следить за тем, в каком порядке расположены члены уравнения.

Уравнение параболы

В первом примере степени аргумента расположены по убыванию. Во втором – по возрастанию. Как записать уравнение – не так важно. Главное – правильно прочитать те результаты, которые нам выдаст программа.

На новом листе отчёта опишем свой вариант задания. Напомним, что мы в качестве примера рассматриваем нулевой вариант.

Пределы изменения факторного признака: от 1000 до 3000.

Уравнение функции:

y = 7000 – 7 · x +0,002 · x

+200 · e

Коэффициенты уравнения:

a

= 7000

a
<< 1 2 3 4 5 >>
На страницу:
2 из 5