Оценить:
 Рейтинг: 0

Статистический анализ взаимосвязи. Учебное пособие

Год написания книги
2019
<< 1 2 3 4 5 >>
На страницу:
4 из 5
Настройки чтения
Размер шрифта
Высота строк
Поля

При выборе режима вставки из буфера можно сразу увидеть результат на экране. Нажимаем кнопку

Values

Значения.

После вставки получаем числа вместо формул в ячейках таблицы. Теперь никакие наши действия не приведут к обновлению и изменению данных.

Диаграмма разброса

Пришло время посмотреть на график наших исходных данных. На диаграмме разброса каждая пара чисел Х и Y изображается отдельной точкой. Точки на графике НЕ СОЕДИНЯЮТ линиями. В примере «Рост – Вес» нет никакой связи между параметрами соседей по парте. Поэтому каждый человек – это отдельная точка на графике.

Выделяем два столбца с округлёнными значениями X и Y. Выбираем в меню:

Insert – Charts – Insert Scatter (X, Y) or Bubble Chart – Scatter – Scatter

Вставка – Диаграммы – Вставить точечную (X, Y) или пузырьковую диаграмму – Точечная – Точечная.

Вставка диаграммы разброса

По умолчанию диаграмма разброса выглядит не слишком привлекательно – см. график. Настроим оформление графика.

Диаграмма разброса по умолчанию

Настроим масштаб по осям, чтобы диаграмма заполняла всё поле графика. Дважды щёлкнем по горизонтальной оси. В диалоговом окне

Format Axis

Формат оси

выбираем раздел

Axis Options

Параметры оси.

Устанавливаем пределы по горизонтальной оси от 1000 до 2000.

Масштаб по оси

Щёлкнем по вертикальной оси и выберем такие значения, чтобы диаграмма разброса занимала всё место на графике.

Теперь настроим заголовки. Щёлкнем по графику и нажмём на кнопку

Chart Elements

Элементы диаграммы.

Это квадратная кнопка с символом ПЛЮС справа вверху.

Элементы графика

Отмечаем пункт

Axis Titles

Названия осей.

Заголовки осей

Отредактируем заголовки и укажем, где находятся наши «иксы» и «игреки». Для дальнейшего украшения развернём заголовок вертикальной оси на 45 градусов. Щёлкнем по заголовку вертикальной оси и выберем в меню:

Format Axis Title – Text Options – TextBox – Text Box – Text direction – Horizontal

Формат названия оси – Параметры текста – Надпись – Надпись – Направление текста – Горизонтально.

Далее установим чёрный цвет для точек-маркеров. Щёлкнем по маркерам и установим в меню чёрный цвет:

Format Data Series – Series Options – Fill & Line – Marker – Marker Options – Fill – Solid fill – Color – Black

Формат ряда данных – Параметры ряда – Заливка и границы – Маркер – Параметры маркера – Заливка – Сплошная заливка – Цвет – Чёрный.

Здесь же отключим обрамление маркеров:

Format Data Series – Series Options – Fill & Line – Marker – Marker Options – Border – No line

Формат ряда данных – Параметры ряда – Заливка и границы – Маркер – Параметры маркера – Граница – Нет линий.

После настроек диаграмма разброса должна выглядеть следующим образом – см. рисунок.

Оформленная диаграмма

Корреляционный анализ

Корреляционный анализ позволяет исследовать тесноту связи, то есть степень разброса точек вокруг линии. Чем ближе точки к линии регрессии, тем лучше ТЕСНОТА СВЯЗИ. Имеется в виду линия, которую МОЖНО построить в среднем по этом точкам. На самом деле при анализе взаимосвязи перед нами находятся только точки, а линии пока ещё НЕТ.

Теснота линейной связи оценивается с помощью КОЭФФИЦИЕНТА ЛИНЕЙНОЙ КОРРЕЛЯЦИИ r. Здесь говорится именно о ЛИНЕЙНОЙ связи и анализируется разброс вокруг будущей, возможной ПРЯМОЙ линии. Другими словами, мы выясняем, есть ли смысл в построении прямой линии в среднем по нашим точкам.

Коэффициент корреляции принимает значения от —1 до +1 включительно.

Знак коэффициента указывает на НАПРАВЛЕНИЕ связи – прямую или обратную связь. Положительная корреляция означает, что с увеличением фактора в среднем возрастает результативный признак. Это прямая связь. Отрицательная корреляция – это обратное направление связи, то есть снижение, убывание, падение графика. С увеличением фактора убывает результат.

Величина (модуль, абсолютное значение) коэффициента характеризует ТЕСНОТУ линейной связи. Чем ближе значение к единице, тем меньше разброс, тем ближе точки к прямой линии. Чем ближе коэффициент к нулю, тем сильнее разброс вокруг прямой. Традиционное толкование величины коэффициента корреляции приводится в таблице.

Возможна и другая ситуация – НЕЛИНЕЙНАЯ зависимость, которая тоже представляет собой отсутствие линейной связи. Нелинейной зависимостью является всё, что не является линейным, например, кривая или ломаная линия. В этом случае коэффициент линейной корреляции будет близок к нулю. Но при этом точки могут быть очень тесно расположены вокруг кривой или ломаной линии. Для анализа степени нелинейной связи используют другие коэффициенты корреляции. В данной работе мы ограничимся только анализом тесноты линейной зависимости.

Как и во многих других случаях, для вычисления коэффициента корреляции в Excel имеются несколько способов:

– надстройка;
<< 1 2 3 4 5 >>
На страницу:
4 из 5