Оценить:
 Рейтинг: 4.6

Микробиология с основами эпидемиологии и методами микробиологических исследований

Жанр
Год написания книги
2016
<< 1 ... 4 5 6 7 8 9 10 11 12 ... 26 >>
На страницу:
8 из 26
Настройки чтения
Размер шрифта
Высота строк
Поля

Вирусные белки подразделяются на структурные и неструктурные. Структурные белки составляют суперкапсид, в составе сердцевины – геномные белки. Неструктурные белки не входят в состав вирусных частиц и обнаруживаются только в зараженной клетке в процессе репродукции. Это ферменты, осуществляющие функции регуляторов, и белки-регуляторы. Аминокислотная последовательность белков вирусов иная, чем у человека, поэтому их можно определять внутри клетки.

Синтез вирусных белков на рибосомах клеток идет по общим законам и регулируется информационной РНК (иРНК), которая образуется на матричных вирусных нуклеиновых кислотах. Белки вирусов выполняют защитную, адресную и регулирующие функции.

Защитная функция – это экранирование нуклеиновой кислоты вируса от химических факторов, нуклеаз и т. д., благодаря чему вирусы существуют тысячи лет.

Адресная функция состоит в проникновении только в нужную чувствительную клетку, а не в любую. Регулирующие функции выполняют внутриклеточные белки вирусов, ферменты, ферментные комплексы.

Вирусные нуклеиновые кислоты имеют существенные отличия от нуклеиновых кислот всех других существ. Обычно генетическая информация закодирована в двуспиральной ДНК и имеется однонитевая РНК (информационная, транспортная, рибосомальная). У вирусов в качестве геномной может быть как ДНК, так и РНК. У некоторых вирусов (РНК-геномных) вирионная РНК одновременно может выполнять роль информационной. Такие вирусы называют нитевыми. Если выделить в чистом виде такую РНК и поместить в клетку, то инфекция будет протекать так же, как если бы туда проник целый вирус. У других вирусов (нитевых) РНК не может выполнять функцию информационной.

Вирусы отличает многообразная структура нуклеиновых кислот. Их можно получить, разрушив вирус химическими (фенолом) или физическими (ультразвуком) факторами. Выделяют ДНК-содержащие вирусы, у которых она может присутствовать в виде: классической двунитевой (аденовирусы, герпесвирусы); двунитевой линейной с замкнутыми концами (оспа); двунитевой линейной с разрывами одной цепи (Т-фаги); с несколькими разрывами одной нити (каждый фрагмент – уникальный ген); двунитевой, замкнутой в кольцо со сверхвитками, (суперспирализация) или без них (тогавирусы); двунитевой, у которой внешняя нить замкнута в кольцо (L-нить), а у внутренней

/

отсутствует (S – нить, шорт) – гепаднавирусы; уникальной линейной однонитевой ДНК (парвовирусы); однонитевой замкнутой в кольцо (фаги).

РНК-содержащие вирусы также делятся на несколько типов: классический однонитевой линейный (пикорновирусы, тогавирусы, парамиксовирусы, рабдовирусы); линейный однонитевой фрагментированный (ортомиксовирусы); однонитевой фрагментированный, где каждый фрагмент замкнут в кольцо (буньявирусы); двунитевой с идентичными нитями (ретровирусы); двунитевой фрагментированный (реовирусы).

По химическому составу вирусные РНК и ДНК аналогичны клеточным, но в отличие от них содержат метилированный урацил.

Липиды имеют сложно устроенные вирусы, их наличие характерно для патогенных вирусов. Содержание липидов в вирусах различно: от 1,5 до 54 % (тогавирусы). Липидный состав вирусов непостоянен, у большинства это липиды клеточного происхождения. Липиды содержатся в суперкапсиде и зависят от клетки хозяина. Липидный состав различных чувствительных клеток при включении в них одного и того же вируса будет разным, тогда как одинаковые клетки при включении в них разных вирусов сохранят идентичность. Липиды выполняют важную защитную функцию, укрепляя белковый скелет суперкапсида. Они имеют вид липопротеидного или гликопротеидного комплекса. У поксвирусов синтезируются собственные липиды под контролем самого вируса, и поэтому состав липидов у них постоянен.

Углеводы входят в суперкапсид сложно устроенных вирусов преимущественно в составе различных шипов в виде моносахаридов, аминосахаридов (2 – 3 цепочки в комплексе с белковым или липидным компонентом – гликопротеидом, гликолипопротеидом). У вируса гриппа это гемагглютинин и нейраминидаза, у парагриппа – комбинированный шип гемагглютинина и нейраминидазы, у ВИЧ – поверхностные структуры gp 41- и gp 120-гликопротеиды, у вируса клещевого энцефалита – шипы гемагглютинина.

Углеводный компонент вируса определяется клеткой хозяина, укрепляет суперкапсидную структуру, придавая ей жесткость. Удаление гликопротеидных комплексов у сложно устроенных вирусов ведет к потере способности к адсорбции на чувствительных клетках. У просто устроенных вирусов углеводный компонент отсутствует.

В составе вирусов могут быть и другие компоненты. В состав полипептидов, например, часто включаются фосфаты (аденовирусы, ретровирусы, герпесвирусы, поксвирусы, ортомиксовирусы), их конкретная функция пока точно не установлена. Некоторые вирусы содержат микроэлементы: медь, молибден, а отдельные вирусы – целый набор ферментов: поксвирусы – 10, ВИЧ – 4, вирус гриппа – 3 фермента. Ферменты обеспечивают вирусную репродукцию: реакцию полимеризации (образования иРНК), репликацию (образование новых нитей нуклеиновых кислот) по принципу комплементарности. В ряде случаев ферменты синтезируются за счет генома вируса.

Вирусы также активно используют клеточные ферменты, например, у гриппа гемагглютинин находится в составе шипов в неактивном состоянии и для адсорбции на клеточном эпителии необходима протеолитическая активация гемагглютинина за счет ферментов клеточного секрета. Только после этого достигается соответствие прикрепительного белка структурам чувствительной клетки.

У ДНК-геномных вирусов ДНК-зависимая полимераза обеспечивает синтез иРНК. Благодаря ферментам происходит модификация синтезированной цепочки НК: удлинение цепи, укорочение, «подчищение» или процессинг нуклеиновых кислот – разрезание и удаление из определенных участков 1 – 2 нуклеотидов, а затем сшивание этого участка лигазой.

2.4. Бактериофаги

Бактериофаг – вирус бактерий, паразитирующий только на живой микробной клетке и являющийся важным генетическим фактором микроорганизмов. Открыт в 1917 г. французским ученым д’Эррелем. Название бактериофага происходит от греч. «фагос» – пожиратель. Бактериофаг имеет корпускулярное строение и представляет собой шаровидное тело (головку) с отростком. Вирус покрыт белковой оболочкой. В головке фага заключены ДНК или РНК. Размеры фага колеблются в пределах 45 – 100 нм (рис. 11).

По сравнению с вирусами фаги довольно устойчивы во внешней среде. Они хорошо переносят низкие температуры, но при +70 °C инактивируются. Формалин инактивирует фаги через несколько минут. Также губительно действуют на фаги ультрафиолетовое и ионизирующее излучения, однако в малых дозах они могут вызвать мутации.

Рис. 11. Начальные этапы взаимодействия фага с оболочкой бактерии (по: Воробьев А. А. и Кривошеин Ю. С., 2002)

Стадии взаимодействия бактериофага с бактериальной клеткой:

I фаза – адсорбция на клетке при соответствии фаговых рецепторов с рецепторами бактериальной клетки;

II фаза – внедрение фага в клетку, через канал фага в клетку попадает его нуклеиновая кислота; в отличие от вирусов капсидные белки головки и отростка остаются вне клетки;

III фаза – репликация фаговой РНК или ДНК, синтез фагоспецифических ферментов транскрипции и репликации;

IV фаза – сборка фаговых частиц, которая происходит гораздо быстрее, чем при репродукции других вирусов;

V фаза – выход фагов из клетки происходит по типу взрыва, во время которого зараженные бактерии лизируются.

Существуют вирулентные и умеренные фаги. Вирулентные фаги вызывают инфекцию, заканчивающуюся лизисом бактериальных клеток и синтезом новых фаговых частиц. Умеренные фаги не лизируют зараженные ими клетки. ДНК этих фагов включается в хромосому бактерий и передается при их делении неограниченному числу потомков. Такой тип взаимодействия фага с клеткой называется лизогенией, а бактерии, несущие в геноме фаговую ДНК (профаг), называются лизогенными. Они широко распространены в природе и обнаруживаются в воде, почве, сточных водах, испражнениях больных и других биосубстратах.

Репродукция вирулентного фага в клетках бульонной бактериальной культуры сопровождается их лизисом и просветлением среды. На газоне чувствительных бактерий, выращенных на агаровой среде в чашке Петри, фаги образуют зоны очагового или сплошного лизиса, что зависит от их концентрации. Зоны очагового лизиса получили название негативных колоний фага или стерильных пятен-бляшек. Они имеют морфологию, характерную для определенных фагов, и образуются из одной фаговой частицы при внедрении ее и последующей репродукции в клетках микроорганизмов.

Большинство фагов характеризуется видоспецифичностью в отношении бактерий. Однако существуют фаги, способные поражать только отдельные варианты одного и того же вида бактерий. Их используют для определения фаговаров (фаготипов) внутри данного вида.

В практической работе фаги применяют для:

– фаготипирования бактерий, что важно для маркировки исследуемых культур при эпидемиологическом анализе заболеваний;

– дифференцировки бактериальных культур с целью установления их видовой принадлежности;

– фагодиагностики, заключающейся в выделении фага из организма больного (например, из испражнений), что косвенно свидетельствует о наличии в материале соответствующих микроорганизмов.

Фаги, так как они обладают антигенными свойствами, используют также для иммунизации животных с целью получения диагностических антифаговых сывороток. Кроме того, в отдельных случаях их применяют для лечения инфекционных заболеваний (фаготерапии).

2.5. Прионы

В 1957 г. американский врач Д. К. Гайдушек при обследовании в Новой Гвинее больных куру – смертельным дегенеративным заболеванием мозга, связанным с ритуальным каннибализмом, обратил внимание на сходство этого заболевания с давно известным медленным вирусным заболеванием овец – скрепи. Позже было выявлено сходство в развитии и некоторых других заболеваний, например болезни Крейтцфельдта – Якоба (БКЯ). За исследования в этой области Д. К. Гайдушек в 1976 г. был удостоен Нобелевской премии.

Инфекционный агент этих заболеваний имел важные отличия от других возбудителей, в том числе вирусов (табл. 1): он не был виден в электронный микроскоп, не вызывал иммунных реакций, не инактивировался факторами, разрушающими нуклеиновые кислоты, имел крайне малые размеры (меньше 25 нм). Ранее было высказано предположение, что этот агент представляет собой принципиально новый тип возбудителя – инфекционный белок.

Таблица 1

Сравнительная характеристика вирусов и прионов

В 1982 г. американский ученый С. Прузинер, используя новые подходы к накоплению и очистке возбудителя, выделил соответствующую протеиновую фракцию. Он доказал, что этот белок способен вызывать спонгиформную энцефалопатию и назвал его прионом (сокращение от протеиновые инфекционные нуклеолы). В 1984 г. С. Прузинер установил, что прионы лежат в основе как наследственных, так и инфекционных болезней, что вызвало полное недоумение многих специалистов. Значительно позже, в 1997 г., этому ученому была присуждена Нобелевская премия в области физиологии и медицины за серию научных работ о прионах.

Существуют так называемые «конформационные» болезни, которые характеризуются пространственным изменением третичной структуры внутриклеточных белков с образованием жесткой бетаструктуры вместо нормальной альфа-спиральной. Бета-структуры, в отличие от альфа-структур, становятся устойчивыми к расщепляющим их ферментам, вследствие чего накапливаются, агрегируются и полимеризуются, формируя различные специфические и неспецифические внутриклеточные включения (фибриллы, агрегаты и амилоид). Некоторые из них приобретают новые, в частности нейротоксичные, свойства, становясь причиной развития целого ряда нейродегенеративных заболеваний (болезни Альцгеймера, бокового амиотрофического склероза и др. ).

Конформационные изменения белков в организме в определенных условиях происходят и в норме, однако в условиях патологии процесс изменения структуры белка резко ускоряется, что может быть обусловлено как эндогенными (мутации, ошибки транскрипции и трансляции), так и экзогенными факторами (окислительный процесс, вирусы и их генные продукты). Таким образом, среди конформационных болезней можно выделить инфекционные, наследственные и спорадические формы. Некоторые конформационные болезни могут проявляться во всех трех формах. К числу последних относятся крайне актуальные в настоящее время прионные инфекции. Прионы представляют собой сиалогликопротеид (PrP) с молекулярной массой 33 – 35 кД, состоящий из 254 аминокислот (включая 22-членный N-терминальный сигнальный пептид), к боковым цепям которых присоединены остатки сахаров. Прионный белок очень устойчив к различным физическим факторам и химическим веществам. Инактивации его можно добиться только обработкой 90 % фенолом и автоклавированием при самом жестком режиме (табл. 2).

Таблица 2

Устойчивость прионов к различным воздействиям (по: Шлопов В. Г., 1998)

Сиалогликопротеид PrP входит в состав наружных клеточных мембран и является компонентом многих клеток организма, хотя максимальная его концентрация выявляется в нейронах. Делеция гена PRNP не приводит к немедленной смерти животных, однако через 70 недель у мышей развиваются прогрессирующие симптомы атаксии и нарушается моторная координация.

Прион PrP существует в двух изоформах: нормальной, неинфекционной (PrP

), и патологической, инфекционной (PrP

). Молекулярная масса их одинакова и кодируется одним геном, расположенным на коротком плече 20-й хромосомы. Этот ген найден у многих млекопитающих и птиц.

Прион PrP

значительно более устойчив к действию клеточных протеаз по сравнению с PrP
<< 1 ... 4 5 6 7 8 9 10 11 12 ... 26 >>
На страницу:
8 из 26