Гексафторид урана при стандартных условиях представляет собой быстро испаряющееся твердое вещество, вокруг которого в короткие сроки образуется опасная концентрация паров. По токсичности относится к первому классу опасности (высокотоксичный), чрезвычайно едкое вещество, которое разъедает любую живую ткань с образованием химических ожогов. Воздействие паров и аэрозолей становится причиной отёка лёгких. Всасывается в организм через легкие или желудочно-кишечный тракт. Вызывает тяжелые отравления. В первую очередь поражаются печень и почки. Уран является радиоактивным элементом.
Уважаемые читатели и дятловцеведы, это один из возможных примеров комбинированного воздействия на организм человека двух поражающих факторов в одном флаконе: химического (очень токсичного) и радиационного (слаборадиоактивного). От поражающего действия токсического химического фактора смерть человека может наступить в течение короткого времени (минуты, часы), а от поражающего действия радиации спустя годы могут проявиться отдаленные последствия.
Пожалуй, наступило время для чайной паузы….
В период с 1956 по 1961 годы Суетин работал старшим преподавателем кафедры №23, по своей сущности, как он однажды в самое яблочко выразился – кафедры разделения и применения изотопов. Студентам факультета читал спецкурс №3 по технике безопасности с радиоактивными веществами, спецкурс по физическим свойствам урана, гексафториду урана, спецкурс №1 по разделению изотопов. Гексафторид урана – единственное соединение урана, переходящее в газообразное состояние при относительной низкой температуре. По этой причине широко используется в обогащении урана – разделении изотопов уран-235 и уран-238, одном из основных этапов производства ядерного топлива для атомных реакторов.
Особо следует отметить, что старший преподаватель П.Е.Суетин в период с 1 сентября по 11 октября 1958 года был руководителем производственной практики студента 3-го курса физтеха Колеватого на Березниковском азотно-туковом комбинате. Однако в своих мемуарах об этом случае Суетин почему-то даже не обмолвился. В мае 1959 года назначается заместителем декана, а с мая 1970 – избирается деканом физико-технического факультета. С октября 1976 по 1993 годы Паригорий Евстафьевич – ректор Уральского госуниверситета.
Патриархом создания системы технологического образования на кафедре №23 считается Григорий Тимофеевич Щеголев, работающий с декабря 1951 года заведующим кафедрой на постоянной основе. Щеголев читал студентам спецкурс №2 – оборудование и технологии по разделению изотопов урана. Кафедра №23 установила тесные связи с главным предприятием СССР по обогащению урана – химкомбинатом №813 (Уральский электрохимический завод), расположенным в городе Новоуральск (Свердловск-44). В настоящее время – основное предприятие новоуральского атомного кластера. В 1955 году студенты спецкафедры №23 успешно защищают первые курсовые проекты по диффузному разделению изотопов.
В 1955 году на должности доцента кафедры №23 стал работать Владимир Павлович Скрипов, с отличием закончивший физический факультет и аспирантуру МГУ. Скрипов создал свою уральскую научную школу и впервые на кафедре стал читать курс лекций по физическим методам разделения изотопов. Руководил учебно-исследовательскими и дипломными работами студентов. В 50-е годы прошлого столетия на физико-техническом факультете сложилась деловая атмосфера творческого поиска. Вот как рассказывает Скрипов о духе свободного творчества, занявшего прочное положение на кафедре: «Именно на физтехе сложились благоприятные условия для развертывания поисковой работы. Студенты получали необходимую физико-математическую подготовку. Учебным планом предусматривалось достаточное время для самостоятельных занятий, особенно на старших курсах. Некоторых студентов удавалось вводить в круг будущих исследований уже на 1—3 курсах. В них, как правило, уже чувствовалась ориентация на научную работу».
Кафедра радиохимии. В 1951 году на базе непрофильной лаборатории создается самостоятельная кафедра радиохимии. Заведующим кафедрой был назначен старший научный сотрудник Уральского филиала АН СССР кандидат химических наук Михаил Владимирович Смирнов. В течение короткого промежутка времени Смирнов разработал и читал студентам спецкурсы лекций «Радиометрия» и «Радиохимия». В зачетных книжках спецкурсы шифровались записями: «дополнительные главы физической химии». Под руководством Смирнова четыре выпускника УПИ успешно защищают дипломные исследовательские работы: Г.А.Китаев, Альберт Константинович Штольц, Ю.А.Ткачев, В.Д.Пузако. После ухода Смирнова с кафедры (1953) спецкурс лекций по радиохимии стал читать Штольц.
В июне 1955 года после ликвидации Лаборатории «Б» заведующим кафедрой радиохимии избирается доктор химических наук, основатель уральской школы радиохимиков Сергей Александрович Вознесенский. Одновременно он назначается научным консультантом по проблеме очистки радиоактивных отходов на химкомбинате №817 (НПО «Маяк»), на котором с осени 1957 года стал работать выпускник УПИ и участник рокового похода Кривонищенко…
Вознесенский в период с 1932 по 1941 годы заведовал кафедрой неорганической химии Военной академии химической защиты. В июне 1941 года Вознесенского по ложному доносу арестовывают и осуждают «за антисоветскую деятельность» на 10 лет исправительно-трудовых работ. Находясь в ГУЛАГе, в так называемой шарашке для ученых, с марта 1943 года по декабрь 1947 года руководил московской научно-исследовательской группой в лаборатории 4-го спецотдела НКВД СССР. В декабре 1947 года переводится в Лабораторию «Б» (Челябинская область, пос. Сунгуль, санаторий НКВД) на должность заведующего радиохимическим отделом. В Лаборатории «Б» на должности заведующего биофизическим отделом совершает трудовые подвиги другой узник ГУЛАГа – Тимофеев-Ресовский (Зубр), легендарная личность, советский ученый, основоположник радиационной генетики и радиобиологии. Под руководством Вознесенского в Лаборатории «Б» проводились исследования по разработке способов очистки радиоактивных сточных вод и методов получения радиоактивных изотопов из растворов деления урана, поставляемых с химкомбината №817 (НПО «Маяк», г. Озерск, Челябинская область). Из так называемой «юшки» ученые шарашки выделяли различные радиоактивные изотопы, например, короткоживущие изотопы тория…
В 1955 году Вознесенский добивается открытия при кафедре собственной аспирантуры. Первыми аспирантами становятся вышеупомянутый Шульц и выпускник УПИ – И.С.Пехташев, который к этому времени читал спецкурс на спецкафедре №43. В период работы Вознесенского при кафедре радиохимии создается секретная отраслевая научно-исследовательская лаборатория. Основная задача лаборатории заключалась в разработке инновационных способов переработки радиоактивно-загрязненных сточных вод. Научным руководителем лаборатории был Вознесенский, заместителем кандидат химических наук В.Л.Золотавин. Научно-исследовательская лаборатория (НИЛ) кафедры радиохимии была зашифрована под наименованием п/я 329, имела свой собственный штат, собственного бухгалтера. В сущности такая организационно-штатная единица УПИ имела право самостоятельно вести с заказчиками НИР хозяйственно-договорную деятельность, направлять в служебные командировки штатных преподавателей и совместителей, работающих на кафедрах физико-технического факультета. Весной 1958 года Вознесенский переводится в Москву, где должен был в Министерстве среднего машиностроения СССР с «нуля» создавать специальный институт по очистке радиоактивных сточных вод. Однако спустя несколько месяцев в августе скоропостижно умирает от рака легких.
Весной 1958 года кафедрой радиохимии стал заведовать ученик Вознесенского – кандидат химических наук Виталий Дмитриевич Пузако. Молодой ученый разработал и впервые на факультете прочитал лекционный курс по дозиметрии ионизирующих излучений. Под его руководством создается лаборатория дозиметрии. Научные направления Пузако – решение проблемы состояния радиоактивных изотопов в растворах и способы их извлечения с радиоаналитическими и технологическими целями. Считается первым ответственным за хранение источников ионизирующих излучений в хранилище радиоактивных источников УПИ. Пузако является автором и соавтором более 100 научных публикаций и 35 авторских свидетельств на изобретения. Важная деталь! Некоторая часть научных разработок Пузако внедрена в химических службах ВМФ, АЭС, а также использовалась при ликвидации последствий Чернобыльской катастрофы. В период с 1961 по 1977 годы Пузако отвечал за работу комитета при Свердловском областном совете НТО по внедрению радиоактивных изотопов и источников ионизирующих излучений в народное хозяйство Уральского региона.
Кафедра «Физико-химические методы анализа». До появления физтеха в декабре 1948 года кандидат химических наук Ю.В.Карякин с «нуля» создает кафедру «Физико-химические методы анализа». Однако в январе 1950 года Карякин по распоряжению правительства переводится в Новоуральск на Уральский электрохимический комбинат (Свердловск-44). Доктор химических наук Карякин осуществлял руководство всеми научными работами в области химии и технологии урана, которые проводились на химкомбинате №813.
После Карякина кафедру возглавляет доктор химических наук Валерий Леонидович Золотавин, который активно привлекал студентов факультета к научно-исследовательской работе. Старший инженер научно-исследовательской лаборатории кафедры радиохимии (п/я 329) Н.Н.Калугина вспоминала его фразу: «Месяц я работаю на студента, остальное время – он на меня». Под руководством Золотавина на кафедре было организовано студенческое научное общество по актуальным темам: «Спектральный анализ», «Аналитические свойства редких и радиоактивных элементов». Главное научное направление кафедры – аналитическая химия ванадия и его соединений. Одним из ветеранов кафедры «Физико-химические методы анализа» считается доцент кафедры Тамара Алексеевна Соболева. Она активно привлекала студентов факультета к научно-исследовательской работе по проблематике: «Аналитическая химия тория».
Следует отметить, что после научного кружка на кафедре профессора Крылова будущий начальник дозиметрической службы УПИ Юрий Худенский переходит на кафедру аналитической химии профессора Золотавина.
Спецкафедра №24. В 1951 году создается второе чисто физическое учебно-научное подразделение, под цифровой номинацией шифровалась кафедра экспериментальной физики. По замыслу организаторов атомного проекта эта кафедра должна была стать центром ядерно-физического образования и иметь на табельном оснащении различные ускорители заряженных частиц, даже исследовательский ядерный реактор. Советская атомная индустрия остро нуждалась в специалистах высокой квалификации по ядерным физическим установкам, приборам и методам экспериментальной физики, дозиметрическим приборам и защите от источников ионизирующих излучений. На кафедре осуществлялась подготовка инженеров-физиков по специальности «Электроника и автоматика спецпроизводств». Под термином «спецпроизводство» шифровался комплекс технологий от создания атомной бомбы до изготовления атомного реактора электростанций.
Первым заведующим кафедрой становится доктор физико-технических наук Рудольф Иванович Янус, одновременно возглавляет лабораторию магнитных явлений Свердловского Института физики металлов. Спустя несколько месяцев выдающийся специалист по магнитной дефектоскопии оставляет кафедру и сосредотачивает свою научную деятельность в Институте физики металлов. В период с 1952 по январь 1959 года руководителем кафедры №24 работает В.Г.Степанов. При нем был построен корпус электрофизических установок и создается проблемная научно-исследовательская электрофизическая лаборатория. Организуется поставка ускорительной техники (бетатроны, циклотрон Р-7, электростатический ускоритель ЭГ-2,5) и ее монтаж в здании факультета. В течение трех лет (1952—1955) Степанов по инициативе директора УПИ совмещает две должности: заведует кафедрой №24 и является первым деканом радиотехнического факультета.
В январе 1959 года Степанов переводится на работу в Институт физики металлов. После него по протекции первого секретаря Свердловского обкома партии тов. Кириленко заведующим кафедрой избирается заместитель начальника Центральной заводской лаборатории по научной работе химкомбината №814 кандидат физико-математических наук Ф.Ф.Гаврилов. Закрытое предприятие располагалось в городе Лесной Свердловской области (Свердловск-45). Сфера деятельности секретного химкомбината №814 – электромагнитное разделение изотопов. Выпуск радиоактивных изотопов на комбинате начинается с осени 1950 года. В Свердловске-45 также находился сверхсекретный завод для серийного изготовления атомных бомб. Гаврилов Филипп Филиппович выпускник Томского госуниверситета, по научному направлению своей деятельности специализировался в лаборатории люминесценции академика С.И.Вавилова. На кафедре №24 начинает формировать научную школу по направлению «Люминесценция кристаллофосфоров». При переводе с секретного химкомбината №814 в УПИ Гаврилов «стырил» новый уникальный кристалл – гидрид лития. Слово «тырить», весьма известное современному поколению, обозначало в те далекие годы не «воровать», как это делают коррупционеры российской действительности, а «копить»…
Гидрид лития – химическое соединение щелочного металла лития и водорода. Под воздействием рентгеновского и ультрафиолетового излучения окрашивается в голубой цвет. При добавлении нескольких граммов гидроокиси лития срок службы щелочного аккумулятора возрастает в три раза. Температурный диапазон действия такого аккумулятора: не разряжается при жаре +40
С и ему не страшен двадцатиградусный мороз. Используется в качестве замедлителя в радиационных защитах ядерных реакторов. Гидрид лития – легкий и портативный источник водорода для наполнения аэростатов, шаров-пилотов, воздушных шаровв полевых условиях и спасательного снаряжения при аварийных ситуациях. Небольшое количество химического соединения связывает колоссальные объемы этого газа: 1 килограмм гидрида лития содержит 2800 литров водорода. В годы второй мировой войны на табельном оснащении американских летчиков находились таблетки гидрида лития. Во время аварийной ситуации над морем под действием воды таблетки мгновенно разлагались и наполняли водородом спасательные средства – надувные плоты, лодки, жилеты, пояса, сигнальные антенны в форме воздушных шаров…
По статусу заведующий кафедрой №24 является научным руководителем проблемной научно-исследовательской электрофизической лабораторией. В течение двух лет под руководством Гаврилова завершается монтаж, запускаются в работу ускорители заряженных частиц. В сентябре 1959 года приняты в эксплуатацию первые ускорители – бетатроны. В 1960 году запускается в эксплуатацию циклотрон Р-7. В декабре 1961 года заканчивается монтаж, начинают работать электростатический ускоритель ЭГ-2,5 и станция жидкого азота. На кафедре имелся даже собственный ядерный реактор, однако затем был передан в УФАН СССР. Циклотрон и поныне используется в Уральском федеральном университете – преемнике Уральского политехнического института. В техническом задании (1956) на монтаж и запуск циклотрона было написано: обеспечивать учебный процесс и проведение научно-исследовательских работ…
На web-проекте Делового квартала 04.04.2011 года была опубликована статья «Финансовая мощь циклотрона». Публикацию поместил Владимир Рычков, доктор химических наук, директор Физико-технологического института Уральского федерального университета (ранее – физико-технический факультет УПИ). В разделе статьи «Продлить жизнь изотопу» автор пишет: «С 2010 по 2014 г. государство выделяет на развитие УрФУ 5 млрд. рублей. В конце срока президент (или премьер-министр) может заглянуть в университет со словами: «Покажите, как деньгами распорядились». Если распылить миллиарды по всем направлениям, результат будет неочевиден. Но можно подвести Дмитрия Медведева (или Владимира Путина) к бронированной двери со значком радиационной опасности и, откатив ее в сторону, сказать: «А тут у нас циклотрон за 400 миллионов – изотопы на нем делаем».
Нет, вы посмотрите на этого ученого-химика из Екатеринбурга, в апреле 2011 года за 1,5 года до выборов он уже знает, кому в 2014 году открывать бронированную дверь со значком радиационной опасности. Уважаемый Владимир Николаевич! Ну и как, заглянули Дмитрий Медведев (или Владимир Путин) за бронированную дверь циклотрона, в камере которой «всклубившись, облако взойдет»?..
Следует отметить, что первый отечественный циклотрон для изучения ядерно-физических технологий был сооружен после войны. Базой для серийного производства классических циклотронов послужило создание в 1951 году циклотрона Р-7. Первые циклотроны подобной модели были построены и введены в эксплуатацию в 1957 году в МГУ, а в 1959 году в Томском политехническом институте. Они позволяли получить ускоренные протоны с энергией 20 мега-электрон-вольт.
Ускорители (циклотрон, бетатрон, ЭГ-2,5) – это установки для получения заряженных частиц (электронов, протонов, атомных ядер, ионов) и производства радиоактивных изотопов. Далеко не все радионуклиды можно получать в атомных реакторах по ядерным реакциям с участием нейтронов. Многие изотопы синтезируют на ускорителях заряженных частиц. В промышленных целях наработку радионуклидов проводят на циклотронах, специально приспособленных для этих целей. Конструкцию первого циклотрона предложил патриарх ядерной медицины американский физик Эрнест Лоуренс в 1929 году, за что получил Нобелевскую премию по физике в 1939 году. Следует отметить, что производство радиоактивного изотопа фосфор-32 на циклотронах имеет долгую историю: первые образцы изотопа фосфора-32 были синтезированы из серы на циклотроне Калифорнийского университета в Беркли в 1938 году…
На кафедре №24 была создана научно-исследовательская лаборатория радиометрии, длительное время ее возглавлял один из первых выпускников физтеха Альберт Константинович Штольц. На физтехе он читал курс лекций по секретным дисциплинам «Радиохимия» и «Радиометрия». Заведующий лабораторией активно привлекал студентов факультета к научно-исследовательской работе. Следует привести воспоминания доцента В.К.Слепухина о Штольце: «У Альберта Константиновича, на мой взгляд, были две очень хорошие черты, которые хотелось бы отметить: во-первых, любой студент, который у него работал по науке, был для него соратником, во-вторых, А.К. четко представлял, что для студента важно, чтобы был выход его научной работы. Т.е. публикация (либо в виде тезисов доклада на конференции или – еще лучше – статьи)». Главное научное направление радиометрической лаборатории Штольца – изучение проблем хемилюминесценции…
Хемилюминесценция – люминесценция (свечение) тел, вызванная химическим воздействием (например, свечение фосфора при медленном окислении), или при протекании химической реакции. В первом номере журнала химиков-энтузиастов «Химия и Химики» за 2010 год опубликована интересная статья Р.Ф.Васильева «Химическое свечение». Вот некоторые фрагменты из этой публикации: «Свечение ночного моря. Голубой свет газовой горелки. Слабое белесое свечение гнилого дерева в лесу. Светящийся фосфор (подчеркнуто мною). Во всех этих случаях свечение возникает за счет энергии химической реакции. Отсюда – название явления: хемилюминесценция, т. е. химическое свечение. Хемилюминесценция является одной из разновидностей более общего явления люминесценции – свечения, вызванного поглощением веществом какого-либо вида энергии. Исследования хемилюминесценции имеют большое значение. В ряде случаев хемилюминесценция оказывается удобным, а порой и единственным способом изучения богатых энергией (возбужденных) молекул и атомов – частиц, играющих большую роль в ряде важных процессов, например, в процессах, идущих под действием радиоактивного излучения, под действием солнечной радиации в верхних слоях атмосферы»…
В творческом тандеме со Штольцем работали преподаватели Вера Сергеевна Колеватова, Людмила Борисовна Левашова (Хамзина) и старший лаборант Лидия Николаевна Пушкина…
Колеватова Вера Сергеевна, родная сестра Александра Колеватого, погибшего в роковом походе, родилась в 1923 году в городе Свердловске. В 1946 году после окончания Уральского политехнического института поступает в аспирантуру по кафедре технологии электрохимических производств и становится младшим научным сотрудником. В 1952 году успешно защищает диссертацию на соискание ученой степени кандидата технических наук. Работает преподавателем на кафедре радиохимического профиля физико-технического факультета. Студентам старших курсов вела практические лабораторные занятия по двум секретным дисциплинам – «Радиохимия» и «Радиометрия». В 1956 году после перевода родного брата Александра Колеватого в УПИ на второй курс фихтеха В.С.Колеватова принимает участие в конкурсе и назначается на должность заведующего кафедрой общей химии Пермского (Молотовского) вечернего машиностроительного института. С 1960 года по конкурсу избирается на должность заведующего кафедрой общей и неорганической химии Пермского политехнического института. В 1962 году Колеватова после защиты диссертации получает ученую степень доктора технических наук. Вполне могла состояться потомственная династия ученых-химиков Колеватовых…
Кафедра теоретической физики. В 1954 году на кафедре теоретической физики появился выпускник аспирантуры МГУ кандидат технических наук Павел Степанович Зырянов. Кстати говоря, Зырянов, как и Колеватов, закончил горно-металлургический техникум по специальности «маркшейдерское дело». Зырянов является одним из ведущих советских физиков-теоретиков, работающих в области физики конденсированного состояния. Однако научные интересы Зырянова не ограничиваются только физическими явлениями, такими как, например, влияние электрической поляризации на магнитные свойства ферритов. Зырянов проявляет особый «биофизический» интерес к радиационной биологии и генетике. Научное любопытство к радиобиологии стало проявляться под влиянием творческих идей «Зубра» – Тимофеева-Ресовского. Зырянов регулярно посещает семинары и знаменитые «трёпы» о насущных научных проблемах, проводимые Тимофеевым-Ресовским в Миассово. В свою очередь Тимофеев-Ресовский становится частым гостем на кафедре теоретической физики. И не только. После зимней сессии 1959 года Тимофеев-Ресовский стал читать студентам физико-технического факультета курс лекций по радиобиологии…
В 1956 году (после закрытия Лаборатории «Б») в Ильменском заповеднике на озере Большое Миассово (Челябинская область) Тимофеев-Ресовский создает уникальную биофизическую лабораторию. К радиационной генетике – исследование мутаций, вызываемых облучением альфа, бета-частиц или гамма-квантов, Тимофеев-Ресовский привлекал известных физиков ещё, будучи, работая в 1925—1945 годы в НИИ (Берлин, Бух) в Германии. В Европе в конце 30-х годов прошлого столетия работы с расщеплением атомного ядра уже активно проводились. Научные эксперименты, которые осуществлял «Зубр» в Бухе, имели такую же номинацию, как в Лаборатории «Б», так и в биофизической лаборатории в Миассово – биологическое действие ионизирующих излучений на живые организмы…
§2. Радиотехнический факультет. Исторической датой рождения факультета считается 25 февраля 1952 года. Именно в этот день приказом по министерству высшего образования №332 создается радиотехнический факультет. На первых порах в состав факультета вошли вновь образованные кафедры: ТОР – теоретических основ радиотехники, аппаратуры автоматического управления, теории автоматических процессов. В год поступления Дятлова и Колмогоровой в Уральский политехнический институт (1954) на факультете были сформированы первые специальные кафедры: радиоприемных устройств, радиопередающих устройств, радиоаппаратуры (радиотехнических систем), автоматики и телемеханики. Все заведующие спецкафедрами были участниками войны и опытными фронтовыми радистами. В 1955 году появляется кафедра «Технология производства радиоаппаратуры». Первый декан факультета (1952—1955) – доцент, кандидат технических наук В. Г. Степанов. После него деканом факультета (1955—1962) назначили доцента кафедры «Аппаратура автоматического управления» кандидата технических наук В.В.Мельникова, который в процессе учебы читал курс «Электрические машины».
Кафедры факультета предназначались для подготовки инженеров-радиотехников по специальности «Радиотехника», «Автоматика и телемеханика», «Автоматические и измерительные устройства», «Радиоэлектронные устройства», «Конструирование и технология производства радиоаппаратуры». Необходимость подготовки таких специалистов была обусловлена стремительным развитием производства радиотехнических средств военного и гражданского предназначения, а также созданием на Урале научно-производственных предприятий атомной и ракетной промышленности. Военно-промышленному комплексу СССР требовались квалифицированные специалисты в области новых развивающихся технологий. Созданные в 1949 году физико-технический и в 1952 году радиотехнический факультеты УПИ стали кузницей кадров высокой квалификации.
Кафедра радиопередающих устройств. В журнале «Радио» (№10, 2003) опубликована заметка Льва Булатова «RK9CWW – полвека в эфире» посвященная юбилею коллективной радиостанции УПИ. В статье автор пишет: «В 1953 г. сюда на первый курс поступил коротковолновик со стажем Виталий Вышинский (UA9CV), а также много военных радистов, прошедших ВОВ и в совершенстве владевших азбукой Морзе. По инициативе Виталия, несколько групп студентов не только радиотехнического, но и многих других факультетов начали изучать азбуку Морзе. Занятия вели бывшие фронтовые радисты, а позже – студенты радиофака. Разрешение на работу в эфире и позывной UA9KCE было получено еще в 1953 г. Первые связи под этим позывным тогда провел Владимир Володин. Связей провел немного, но они были первыми! Регулярная работа в эфире началась в 1955 г. Идейным вдохновителем и руководителем коллектива на этом этапе стал завкафедрой радиопередающих устройств, коротковолновик с еще довоенным стажем Азарий Иннокентьевич Портнягин (UA9CC). Он учил операторов всем тонкостям эфирного общения, вместе с начинающими работал в соревнованиях, делился спортивными навыками. Благодаря ему в коллективе выросли мастера спорта СССР». Портнягин, будучи страстным радиолюбителем и поклонником легендарного советского радиста-полярника Эрнста Кренкеля, активно привлекал студентов к работе в эфире.
В 1956 году на кафедру радиопередающих устройств после окончания аспирантуры Московского энергетического института приезжает работать кандидат технических наук Юрий Николаевич Болотов. Ученик известного ученого в области теоретической радиотехники и передающих устройств Сергея Ивановича Евтянова, автора учебника «Радиопередающие устройства» по которому занимались студенты факультета. Основные направления творческой деятельности Болотова связаны с научной разработкой космических радиоугломерных систем, находившихся на поверхности Земли и на борту искусственных спутников Земли.
На специальной кафедре радиофака преподаватели читали курс лекций и вели практические лабораторные занятия по спецдисциплинам: «Радиопередающие устройства», «Антенно-фидерные устройства», «Электровакуумные приборы», «Теория электромагнитного поля».
Кафедра «Радиоприемные устройства». На спецкафедру возлагалась задача – обеспечить потребности инженеров-радиотехников по радионавигации, радиопеленгации, радиолокации и вычислительной техники для нужд военно-промышленного комплекса и объектов атомной индустрии. Преподаватели кафедры читали курс лекций и вели практические лабораторные занятия по спецдисциплинам: «Радиоприемные устройства», «Усилительные устройства», «Телевидение».
Первым заведующим кафедрой (1954—1957) назначили Нехонова Николая Александровича, выпускника Московского электротехнического института связи. В период с 1950 по 1954 годы Нехонов работал в Свердловске на п/я №79 (НПО «Вектор», «макаронка», «Завод электроавтоматики»)…
Под номерным наименованием п/я №79 шифровался завод берущий свое начало с 1811 года от механических мастерских при Главном штабе Российской армии в Санкт-Петербурге. Мастерская изготавливала математические и геодезические инструменты для Квартирмейстерской части, Депо карт и Инженерного Департамента. В 1812 году Мастерская в полном составе сопровождала ставку военного Министра во время войны с Наполеоном. В Мастерской было налажено изготовление оптико-механических инструментов: мензулы, нивелиры, буссоли, кипрегели и барометры. В 1933 году Мастерская получает статус завода в номинации «Геодезия», продолжает выпускать оптические приборы и начинает производство по изготовлению советских фотоаппаратов «Лейка» и фотоаппаратов для аэросъемки. В августе 1941 года завод эвакуируют из Москвы в Свердловск, начинается выпуск продукции для нужд армии, в том числе фотоаппаратуры для дневной и ночной аэросъемки типа АФА, необходимое оборудование для проявления и печатания снимков и прочее. В 1949 году завод «Геодезия» перепрофилируется с оптико-механического направления на радиолокационный профиль и становится головным учреждением по радиолокационным метеорологическим станциям для нужд Министерства обороны и Гидрометеослужбы СССР. На предприятии создается Особое конструкторское бюро (ОКБ) с наделенными полномочиями: разработка и конструкторское обеспечение производства радиолокационной тематики. С 1951 году п/я №79 приступает к серийному выпуску первой в стране артиллерийской радиолокационной станции орудийной наводки СОН-4. В последующие годы производство модернизируется, с конвейера сходят радиолокационные станции СОН-4А, СОН-9, СОН-9А, СОН-15, СНР-125. На завод радиолокационной техники целевым потоком направляются молодые специалисты – выпускники радиотехнических и приборостроительных факультетов высших учебных заведений. С 1957 года на п/я №79 значительно расширяется номенклатура выпускаемой радиолокационной техники. Появляется новое направление – создание и освоение производства изделий метеорологической тематики. С этого же года на предприятии начинается производство первой радиолокационной метеорологической станции РМС-1 «Метеор». Разработчик – завод №465 (НИИ-20, НИЭМИ г. Москва). На базе этой станции силами ОКБ п/я №79 разрабатываются радиолокационные метеорологические станции для сети Гидрометслужбы страны «Метеорит», «Метеорит-2» и «Метеорит-Р». Новые радиолокационные метеостанции хорошо себя зарекомендовали при работе в неблагоприятных климатических условиях при низких температурах окружающей среды (Арктика, Антарктика). В 1958 году на предприятии началась разработка радиолокационной метеорологической станции ветрового зондирования РВЗ-1 «Проба». В настоящее время, как следует из официального web-проекта, после внедрения новой технологии на предприятии совместно с УрФУ-УПИ разработаны и поставлены на конвейер: автоматизированный радиолокационный вычислительный комплекс (АРВК) «Вектор-М», автоматизированная метеорологическая информационная система (АМИС-1), радиозонды различных модификаций – ветровые, температурные, влажностные, барометрические…
Кафедра технологии производства радиоаппаратуры. Спустя год после поступления Дятлова и Колмогоровой в УПИ (1955) при электротехническом факультете создается кафедра «Технология производства радиоаппаратуры», сосредоточившая преподавание конструкторских и технологических дисциплин радиотехнического факультета. В 1962 году эта кафедра входит в состав радиофака и первым заведующим становится старший преподаватель Матвеев Рафаил Михайлович, один из научных руководителей курсового проекта Колмогоровой. Кафедра поддерживала тесное учебное и научно-производственное сотрудничество с ведущими предприятиями Уральского региона – НПО «Автоматика», НПО «Вектор», НПО «Октябрь» (п/я №33), СКБ «Новатор», СКБ «Деталь», Каслинский радиозавод и другими учреждениями оборонно-промышленного комплекса страны. Например, на Каслинском радиозаводе, расположенном в Челябинской области, производили коротковолновые радиопеленгаторы, приемно-передающие радиостанции, передвижные пеленгационные пункты, оборудование для аэрологического зондирования атмосферы. Кстати говоря, и это очень важно, город Касли в 1957 году после Кыштымской катастрофы попал в зону Восточно-Уральского радиоактивного облака.
Кафедра радиоаппаратуры (радиотехнических систем). Первым заведующим кафедрой радиотехнических систем (1955—1963) работал выпускник Горьковского политехнического института, участник боевых действий в Великой Отечественной войне, начальник штаба отдельного батальона морской пехоты – Василий Анатольевич Лосев. На факультете читал спецкурс лекций по радиотехническим системам.
В 2004 году кафедрой радиоэлектронных и коммуникационных систем УПИ было издано учебное пособие «Радиоэлектронные системы – мой выбор». В нем целая глава посвящена началу и развитию научно-исследовательской работы на кафедре. В 1957 году благодаря энергии и настойчивости декана радиофака В.В.Мельникова на факультете началось выполнение НИР «Глаз» и «Дым». Мельников был научным руководителем НИР «Глаз», а заведующий кафедрой радиопередающих устройств Портнягин – научный руководитель НИР «Дым». Первая работа была посвящена разработке новых систем радиоразведки параметров радиолокационных станций, обслуживающих прифронтовую зону глубиной до 30 километров. Основное назначение таких станций – наблюдение за полем боя и корректировка артиллерийского огня. Вторая работа, «Дым», посвящалась разработке новых систем создания прицельных радиопомех этим радиолокационным станциям. Заведующий кафедрой радиотехнических систем Лосев выполнял один из разделов «Дыма», посвященный созданию аппаратуры имитационных помех. Такие помехи на экранах РЛС формировали отметки, похожие на отметки, которые создавали реальные цели – боевые машины пехоты, бронетранспортеры, танки, артиллерийские орудия, здания, сооружения и прочие. Отметки, имитирующие реальные цели, должны перемещаться по экрану со скоростями, соответствующими скоростям перемещения отметок, создаваемых реальными целями. Иметь близкую к реальным целям интенсивность, «мерцать» так же, как реальные цели. В целом это была система, по своей сложности превосходящая радиолокационную станцию…
Автора независимого расследования разбирает любопытство, какие же маскирующие дымы в качестве имитационных помех использовались в НИР под номинацией «Дым». Неужели пятисернистый фосфор? При нагревании на воздухе сульфиды фосфора сгорают, и таким образом, могут быть использованы для получения дыма. По маскирующей способности по состоянию на 1959 год фосфор занимал первое место из известных дымообразующих веществ. Маскирующая способность фосфора зависит от относительной влажности воздуха и возрастает с ее увеличением. Так, при относительной влажности воздуха 80% маскирующая способность пятисернистого фосфора достигает наибольшей величины – 17, а дымообразующая способность – 12 удельных единиц. В зимний период года при снежной мгле в районе карового озера горы Отортен относительная влажность воздуха может составлять 80—85%. Гидрометеоры, поднимающиеся над поверхностью, например, снежная мгла – представляет собой помрачнение воздуха из-за взвешенных в воздухе снежных частичек. Снежная мгла является предвестником начинающейся метели или, наоборот, служит окончанием метели. Уважаемые читатели и дятловцеведы, последние фотоснимки группы «Хибина» вам ни о чем не говорят?
Из фотоархива А. Коськина.
Последние снимки из фотопленок группы «Хибина»: туристы в снежной мгле заняты отнюдь не установкой палатки.
Фосфор является единственным, имеющим практическое применение представителем группы веществ, дающих дым в результате взаимодействия с кислородом воздуха. Как было сказано выше, при нагревании на воздухе сульфиды фосфора сгорают, и таким образом, могут быть использованы для получения дыма. Возникает логичный вопрос, каким образом зимой в воздухе нагреть пятисернистый фосфор с химической формулой P
S
? Напрашивается единственный ответ, придать химической формуле инновационный оттенок в виде изотопов
P
S