Оценить:
 Рейтинг: 4.67

Период полураспада группы «Хибина». Том первый

Год написания книги
2017
<< 1 2 3 4 5 6 7 8 >>
На страницу:
5 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

и поместить радиоактивную начинку в воздушный шар, изготовленный из высококачественного хлоропрена. Помните детскую сказку Николая Носова «Приключения Незнайки и его друзей»:

…На следующее утро стали готовиться в путь. Торопыжка первым залез в корзину, за ним – Незнайка. – Вы чего забрались в корзину? – спросил Знайка. – Вылезайте еще рано. Шар сначала надо заполнить теплым воздухом. – А зачем теплым? – спросил Торопыжка…

Программой НИР «Дым» были предусмотрены полевые испытания первых образцов аппаратуры, которые состоялись в июле и августе 1958 года вблизи села Кошкуль Челябинской области. В полевых испытаниях принимали участие сотрудники кафедры радиотехнических устройств, кафедры радиопередающих устройств, кафедры радиоприемных устройств и дипломники выпускающих кафедр. В проведении полевых испытаний участвовали три РЛС, переданные от штаба Уральского военного округа, грузовые военные автомобили, агрегаты электропитания с водителями и операторами, роль которых исполняли студенты радиофака. В выполнении НИР в общей сложности принимало участие около 50 штатных сотрудников научно-исследовательского сектора радиотехнического факультета. По результатам испытаний радиотехнических систем заведующим кафедрой Лосевым была успешно защищена диссертация на соискание ученой степени кандидата технических наук.

В одной из НИР (научный руководитель – декан факультета В.В.Мельников) стояла задача обеспечения синхронной перестройки гетеродинов двух территориально удаленных радиоприемных устройств, образующие «базу» гигантского дальномера и осуществляющие «поиск по частоте» объекта, излучающий собственный радиосигнал. В сущности это не что иное как «лиса» – замаскированный радиоприемник. Частота гетеродина настраивалась изменением объема полого резонатора, по этой причине один гетеродин был ведущим, а второй – ведомым. Частота ведомого гетеродина настраивалась электромеханической следящей системой, которая по дополнительному радиоканалу получала угловое положение резонатора ведущего гетеродина. Положение резонатора ведущего гетеродина устанавливалось при помощи углового датчика, в качестве которого использовался вращаемый трансформатор. Гетеродин – это генератор электрических колебаний небольшой мощности, который применяется для преобразования частот сигнала в супергетеродинных радиоприемниках, приемниках прямого преобразования и радиоизмерительных приборах. Одним из основных исполнителей в этой НИР был Владимир Петрович Скуридин читавший на факультете дисциплину «Телемеханика». Скуридин возглавлял научную группу (Г. И. Панов и Ю. А. Барышников), разрабатывающую телемеханические системы – «передачу угловых перемещений» (угловых координат) по радиоканалу.

Следует отметить, что многоэтапные научно-исследовательские и опытно-конструкторские работы на радиотехническом факультете выполнялись под общим руководством декана В.В.Мельникова. Заказчики крупных НИР и НИОКР – Главное ракетно-артиллерийское управление Минобороны, Специальное конструкторское бюро – п/я №320 (НПО Автоматики) и иные ведомственные тайфуны, ставшие «причиной бегства от бури и урагана участников рокового похода в районе горы Отортен». Большинство научных работ, исполнителями которых были преподаватели и студенты старших курсов, а научными руководителями заведующие кафедрами (Печорина, Лосев, Портнягин), декан факультета (Мельников) имели гриф «За семью печатями».

Кстати говоря, в пятидесятые годы прошлого столетия в СКБ – п/я №320 (НПО Автоматики) на должности старшего инженера отбывал административную ссылку родной сын главного героя атомного проекта СССР Лаврентия Берии – Сергей Берия. Секретным постановлением Президиума ЦК КПСС Сергея Берия лишили ученых степеней кандидата, доктора физико-математических наук и воинского звания «инженер-полковник». В феврале 1960 года спустя год после гибели туристов группы «Хибина» на факультете было создано студенческое конструкторское бюро (СКБ-1). В 1962 году декана радиофака УПИ В.В.Мельникова назначают ректором Челябинского политехнического института. Вслед за ним в ЧПИ переводится и заведующий кафедрой радиотехнических систем В.А.Лосев.

§3. О режиме секретности в УПИ. Вот как описывает систему секретности на физико-техническом факультете С.Н.Новиков, выпускник УПИ 1956 года: «Мы, физтехи, были не такие, как все. Во всем чувствовалась некая тайна и избранность. Например, мы должны были проходить особую медкомиссию, помещения факультета были отгорожены деревянным барьером, для входа требовался пропуск, а вечером и ночью дежурили овчарки. Это ощущение секретности сопровождало всюду и очень нравилось мне тогда. Хотя, как потом выяснилось, ничего секретного не было ни в наших лекциях, ни в аккуратно прошнурованных тетрадях. Секретным, пожалуй, был сам факт существования в Свердловске такого факультета, может быть его численность. Однако и это был „секрет Полишинеля“, так как весь огромный город отлично знал, чему учат на Физтехе. Конечно, нам, которым в недалеком будущем пришлось работать на действительно секретных объектах, была нужна эта школа секретности для выработки специфических навыков. Но в личной жизни многих из нас, это было, конечно, отрицательное явление, поскольку оно превращало нас, „будущих командиров производства“, в слепых котят, которые не знали, чему их учат, что ожидает впереди, куда нужно стремиться, чтобы лучше реализовать свои наклонности. Система секретности была также прекрасным рычагом для управления студенческими массами. Ведь нас нельзя было сравнить по дисциплинированности со строителями или металлургами. Если там администрации надо было тратить силы на объяснения своих решений, то нам было достаточно дать команду, чтобы наши ряды молча перестроились и зашагали тем же бодрым темпом в ином направлении (подчеркнуто и выделено мною). В личной жизни некоторых студентов-физтехников это приводило к драмам, так как их внезапно, без объяснения причин, переводили на другие факультеты. Да и меня эта система бесцеремонного распоряжения судьбой человека привела к тому, что я ни дня не работал по специальности, я ее не любил, а питал тайную страсть к физикам (к которым и сбежал, как только закончился курс наук). Часто впоследствии мне не хватало знаний, которые я должен был получить в институте, и приходилось постигать азы самостоятельно».

Весьма любопытны воспоминания доктора физико-математических наук Паригория Евстафьевича Суетина выпускника физтеха 1951 года: «Весной 1949 года я заканчивал 4-й курс энергетического факультета УПИ по специальности „Станции, сети, системы“, получил уже дипломное задание по проектированию синхронного компенсатора. Но перед самыми летними каникулами прошел слух об открытии в УПИ нового факультета – физико-технического. Это было интересно, так как взрыв американских бомб в Алмагордо, Хиросиме и Нагасаки вызывал удивление и понимание того, что нам срочно нужно создать свою атомную бомбу. Причем все это выглядело таинственно, почти мистически, поскольку в нашем прежнем физическом образовании совершенно не содержалось каких-либо сведений об идеях и принципах работы атомной бомбы. Что это? Как? Откуда? Мистика?! Началось формирование учебных групп нового факультета. На базе студентов энергетического факультета была создана учебная группа Ф-516 из 20 человек. На базе металлургического факультета формируются две группы по 25 человек. Происходило это так. Нас индивидуально вызывали в кабинет ректора, Качко Аркадия Семеновича, и после разговора о семейном положении, дальнейших планах и т. д. предлагали перейти на новый факультет и учиться еще два года. Туманно намекали на причастность факультета к атомной проблеме. Вряд ли в то время кто-нибудь в УПИ представлял, о чем идет речь, в том числе и ректор. С первых минут нас предупреждали о соблюдении строжайшей секретности. По-видимому, наши анкеты тщательно проверяло КГБ (выделено мною). Так, не попал на физтех А. Ф. Добрыдень, поскольку во время войны он жил мальчишкой на оккупированной территории. Кстати, впоследствии это не помешало ему стать заведующим отделом науки обкома КПСС, естественно допущенным ко всем секретам „оборонной“ области. Такое было время. Отбирали на физтех хорошо успевающих студентов. Для занятий нам было выделено несколько комнат в конце второго этажа экономического факультета УПИ. Там же разместились деканат и спецчасть. Все тетради для конспектов были прошнурованы и опечатаны. Мы не имели права выносить их за перегородку, отделяющую факультет от остального института, и были обязаны получать их утром и сдавать в спецчасть после окончания занятий (хотя в это время ни один преподаватель не сообщал нам никаких секретных сведений, так как он их не имел и не мог иметь). Поскольку конспекты на дом не давали, вводилась самоподготовка, т.е. после занятий мы выполняли домашние задания и закрепляли пройденный материал в одной из комнат. Эта комната отдавалась группе, здесь нам читали лекции, и мы проводили в этой аудитории по 10—12 часов. Стояло здесь и пианино, по-видимому, специально предназначенное для заполнения пауз в учебе. Учились мы много и с большим интересом».

Эпилог. В первые годы становления физико-технического факультета самостоятельная научная работа студентов стала важнейшим педагогическим принципом, она была введена во все учебные планы и расписание занятий. На старших курсах каждому студенту выделялось 1—2 дня в неделю на научную работу. Кроме того, вместо дипломного проекта, как это было на других факультетах, выпускник физтеха защищал самостоятельную научно-исследовательскую работу, которую он выполнял во время производственной практики, преддипломной практики и дипломирования в течение 8 (восьми!) месяцев. Такая форма обучения воспитывала у студента самое главное качество – способность самостоятельно учиться и добывать знания.

Анализ изменения организационно-штатной структуры Уральского политехнического института дает основание для вывода, что 1956 год становится отправной точкой для развития в институте новых научных школ и научных направлений. После ввода здания физико-технического факультета (5-й учебный корпус) и оборудования на кафедрах физтеха и радиофака проблемных (отраслевых) научно-исследовательских лабораторий создаются идеальные условия для развития НИР и привлечения к их выполнению студентов. В учебный процесс вносятся существенные изменения, что позволяет отказаться от традиционной системы – выполнение лабораторных работ по большей части разделов спецкурсов.

С 1956 года в УПИ вводится система обязательного участия в госбюджетных и договорных научно-исследовательских работах (НИР) с индивидуальным сквозным заданием студента (НИРС) на 3-4-5 курсы обучения. Индивидуальное сквозное задание заканчивалось исследовательской дипломной работой. Такая система обучения способствовала студентам глубоко и прочно усваивать основы технологических процессов. Такая система обучения воспитывала творчески мыслящих специалистов, приобщала их к этике работы в научном сообществе кафедры: научный руководитель НИР (профессор, доцент) – старший преподаватель/преподаватель – научный сотрудник – аспирант – инженер – лаборант – студент. По своей сущности студент становился соратником профессорско-преподавательского состава. Такая система обучения приучала к персональной ответственности за качество и сроки выполнения научно-исследовательских работ. Такая система обучения стала быстро генерировать творческие плоды: в научных журналах публикуются статьи и тезисы, на совещаниях и научно-практических конференциях заслушиваются доклады, вызывающие интерес на предприятиях атомной индустрии, появляются заявки на изобретения. В результатах творческой деятельности (НИР, НИОКР, патент, статья, тезис) полноправными соавторами являлись студенты. В первую очередь студенты старших и выпускных курсов.

Интерес к научно-исследовательским работам (НИР), заказчиками которых выступали объекты атомной индустрии Министерства среднего машиностроения и военные ведомства, преподавателей и студентов проявляется сразу с открытием на кафедрах НИЛ – проблемных (отраслевых) научно-исследовательских лабораторий. К творческим лаврам в первую очередь стремились молодые исследователи – студенты старших курсов и аспиранты выпускающих кафедр факультетов.

Например, студенты физико-технического факультета Юрий Александрович Корейшо и Юрий Владимирович Кузнецов выполнили научную работу по теме: «Восстановление ионов шестивалентного урана до четырехвалентного урана в сульфатно-фторидных растворах». Работа произвела настоящий фурор и была поощрена денежными вознаграждениями. Интересна дальнейшая судьба лауреатов двух премий – УПИ и города Свердловска. Корейшо направляют в АО «Висмут» (ГДР), где он получает опыт работы от инженера химического цеха горно-обогатительной фабрики до директора гидрометаллургического завода. В дальнейшем Корейшо становится генеральным директором Прикаспийского горно-металлургического комбината (Казахстан, г. Шевченко) и лауреатом Ленинской премии. На этом же комбинате прошел путь от главного инженера до генерального директора Кузнецов, впоследствии удостоенный высокого звания Героя социалистического труда.

В 1951 году на физико-технический факультет поступает Юрий Вячеславович Егоров, будучи студентом третьего курса, заинтересовался проблемой физико-химических особенностей поведения радиоактивных веществ при крайне низких их концентрациях в водных растворах. В конце 1956 года накануне отъезда Егорова на преддипломную практику на химкомбинат №817 (НПО «Маяк») заведующий кафедрой радиохимии Вознесенский формулирует гениальному студенту тему дипломной исследовательской работы: «Проектирование цеха дезактивации жидких радиоактивных отходов нетехнологического происхождения». В производственных помещениях химкомбината после ежедневного мытья полов дезактивирующими растворами с применением поверхностно-активных веществ образовывались так называемые «трапные» радиоактивные стоки. Подобные стоки формировались и в банно-прачечных отделениях после стирки спецодежды работников, соприкасающихся с радиоактивными веществами в открытом виде. Эти стоки содержали в своем составе дезактиваторы (например, сульфанол), которые прочно связывают радиоактивные изотопы. Данное обстоятельство создает трудности проведения операции концентрирования радиоактивных веществ, поскольку объем таких стоков очень большой, а суммарное содержание радионуклидов в единице объема раствора (удельная активность) значительно ниже, чем в технологических стоках. Тем не менее, такие стоки сбрасывались в реку Теча без предварительной обработки.

В первые годы работы химкомбината НПО «Маяк» легенды атомного проекта рассуждали следующим образом: вода реки Теча через бассейны рек Исеть, Тобол, Иртыш вливается в Обь, далее движется в Обскую губу и растекается в бескрайних просторах Северного Ледовитого океана. По пути, следуя законам физики, из-за большого притока речной воды удельная активность должна существенно снижаться ввиду рассеивания. Однако этого не произошло, в дебюте водной миграции донная почва Течи, ил, осадок, состоящий из смеси минеральных и органических веществ, стали извлекать из речной воды и поглощать радиоактивные изотопы с разной степенью вероятности. Дно реки Теча превратилось в накопитель радионуклидов в первую очередь долгоживущих плутония и цезия. В сущности, дипломный проект студента пятого курса Егорова закладывал основы новой науки – радиоэкологии. После окончания института выпускник кафедры №43 Егоров два года работает в одной из проблемных лабораторий Министерства среднего машиностроения. В 1959 году поступает в аспирантуру УПИ и становится ассистентом кафедры радиохимии. Итог творческого дебюта: доктор химических наук, восьмой декан физико-технического факультета, Заслуженный деятель науки РФ, член-корреспондент РАЕН.

В 1954 году на радиотехнический факультет поступает Валерий Аркадьевич Чердынцев (вместе с Дятловым и Колмогоровой), начиная с третьего курса института, принимает активное участие в научно-исследовательской работе, проводимой на факультете в области систем СВЧ радионаблюдения и радиопеленгации. В 1959 году с отличием заканчивает УПИ и становится ассистентом кафедры радиоприемных устройств. Основоположник научной школы «Статистическая теория и техника формирования, приема и обработки сигналов в радиотехнических системах». Итог красноречив: доктор технических наук, профессор, лауреат премии Министерства обороны СССР, Заслуженный деятель науки Республики Беларусь.

В этом списке достойное место могли занять студенты и выпускники Уральского политехнического института, которых AlmaMater направила в ставший роковым поход высшей категории трудности в район горы Отортен: Игорь Дятлов, Зина Колмогорова, Юрий Дорошенко, Александр Колеватов, Людмила Дубинина, Георгий Кривонищенко, Рустем Слободин, Николай Тибо-Бриньоль. К этому перечню, вне всякого сомнения, можно добавить как минимум две фамилии – Демьяненко и Никитин.

Чайная пауза…

Глава 2. Состав участников группы «Хибина»

Участники лыжного похода высшей категории трудности в район горы Отортен, имеющие отношение к Уральскому политехническому институту (студенты, выпускники), представлены по рангу в порядке допуска к сведениям, содержащим информацию с грифом «За семью печатями» и опыта работы на режимных объектах советской атомной индустрии. Нестандартный научный подход автора независимого расследования (бывшего секретчика 2-го учебного взвода факультета подготовки военных врачей) к детальному анализу персонального состава группы и ничего более. Каждый участник похода характеризуется на взгляд автора с точки зрения ключевых компетенций и квалификационных характеристик, выполняемых в группе «Хибина».

Александр Колеватов

Александр Колеватов, топ-менеджмент группы. Научный руководитель экспедиции. Старший менеджер и радиохимик сектора – разведка и поиск урана. Менеджер сектора – фототеодолитная съёмка движущихся объектов.

Колеватов Александр Сергеевич – студент 4-го курса физико-технического факультета Уральского политехнического института. Родился 16 ноября 1934 года, после окончания семилетней школы поступает на маркшейдерское отделение в Свердловский горно-металлургический техникум. В 1953 году окончил среднетехническое заведение по специальности «Металлургия тяжелых цветных металлов». После окончания учебы за проявленный интерес к научной работе был оставлен в техникуме на должности техника-металлурга. Однако практически сразу после получения диплома в августе 1953 года откомандировывается на работу в НИИ Главгорстроя п/я 3394 в должности старшего лаборанта научно-исследовательской лаборатории №5. На следующий год (1954) Колеватов поступает во Всесоюзный заочный политехнический институт на специальность «Металлургия цветных металлов».

Необходимо отметить, что «атомный маршал» Лаврентий Павлович Берия, будучи наркомом внутренних дел, курировал работу НКВД-НКГБ и наркомат цветной металлургии. В наркомат цветной металлургии входили не только заводы, шахты, строящиеся объекты, но и все учебные заведения горно-металлургического профиля. По этой причине нет ничего удивительного в том, что Колеватов оказался в одном из самых секретных научно-исследовательских институтов…

В конце 1944 года Государственный комитет обороны нашей страны принял постановление об организации НИИ по урану – Института специальных металлов НКВД СССР, сокращенное наименование «Инспецмет НКВД». Приоритет в создании института принадлежит «советской мадам кюри» – Зинаиде Васильевне Ершовой, легенде отечественной радиохимии. Для строительства института в Москве была выбрана площадка в районе Октябрьского поля. В начале 1946 года «Инспецмет НКВД» в составе 10 научно-исследовательских лабораторий приступает к реализации порученных задач. Главная задача, поставленная в первые годы перед институтом – решение урановой проблемы: изучение месторождений урана, разработка методов обогащения урановых руд, разработка технологии переработки и извлечения урана в виде закиси-окиси (U

O

), разработка металлургического процесса получения металлического урана восстановлением его из фторида урана (IV), аналитическое обеспечение этих процессов. Закись-окись урана является главным компонентом основного рудного минерала – настурана. Во второй половине 1947 года работы по урану заметно сокращаются, институту ставится новая чрезвычайно важная задача – разработка технологии получения металлического плутония и изделий из него. Первичная металлургия урана передается в другой НИИ. Все внимание «Инспецмет НКВД» уделяется проблеме плутония и высокообогащенного урана. В 1952 году директором института назначается доктор технических наук Андрей Анатольевич Бочвар, специалист в области металловедения урана и плутония. К этому времени название института несколько раз менялось, после «Инспецмет НКВД» появляется НИИ-9 НКВД, затем просто НИИ-9, далее НИИ Главгорстроя п/я 3394, Предприятие п/я Р-6575. В начале 70-х годов режим секретности несколько снижается и НИИ-9 переименовывается во Всесоюзный научно-исследовательский институт неорганических материалов (ВНИИНМ). В настоящее время – АО ВНИИНМ им. академика А.А.Бочвара.

После назначения Бочвара институт стал быстро развиваться, появляются новые научно-исследовательские лаборатории. В этот период, который совпадает со временем появления Колеватого в секретном учреждении, руководство атомной промышленности принимает решение о создании ядерных реакторов на быстрых нейтронах. НИИ Главгорстроя поручают разработку тепловыделяющих элементов (ТВЭЛов) для такого типа реакторов. В это же время в институте осуществляется разработка тепловыделяющих элементов для первой в мире атомной электростанции на тепловых нейтронах, строительство которой велось на базе Физико-энергетического института в городе Обнинске…

Колеватов в НИИ Главгорстроя («Инспецмет НКВД») работал старшим лаборантом в научно-исследовательской лаборатории №5…

В 1946 году в институте создается металлургическая лаборатория №5 предназначенная для разработки технологии получения металлического урана. В лаборатории проводились исследования металлотермического процесса получения урана с использованием восстановителей кальция и магния. Кстати говоря, американцы при получении урана использовали магниетермический процесс. В середине 1947 года работы по получению металлического урана замораживаются. Лаборатория получает важное задание – разработать процесс получения искусственной начинки ядерной бомбы – металлического плутония и успешно с этой задачей справляется. В 1953 году лаборатория возвращается к разработке технологии получения различных сплавов урана в процессе металлотермического восстановления. В частности был разработан сплав урана с 9% молибдена. Такой сплав использовался в качестве ядерного топлива сначала для тепловыделяющих элементов первой в мире атомной электростанции в Обнинске, а несколько позднее – на Белоярской АЭС. Итог коллективного творчества – новый способ получения в промышленных условиях сплавов урана, как естественного, так и обогащенного.

Начальником лаборатории №5 в 1953—1959 годы был Владимир Степанович Соколов. В этот период в легендарной лаборатории работал доктор технических наук Яков Моисеевич Стерлин, соавтор учебников «Уран и его сплавы», «Металлургия плутония». Руководство работами по созданию промышленных технологий получения урана, плутония, циркония и их сплавов для ядерных реакторов и атомных электростанций осуществлял кандидат технических наук Федор Григорьевич Решетников. Впоследствии Решетников защищает докторскую диссертацию, становится первым заместителем директора ВНИИНМ, академиком РАН.

В конце 1951 года постановлением Совмина СССР под грифом «Сов. секретно» Соколову, Решетникову, Стерлину присуждается Сталинская премия II степени в размере 100 тысяч рублей за достижения в области производства плутония, урана-235 и развития сырьевой базы для атомной промышленности. В этом же документе, помимо вышеуказанных советских инженеров, значатся два немецких доктора наук – Гюнтер Вирц и Герберт Тиме. Сталинская премия в размере 100 тысяч рублей присуждалась не каждому, а на коллектив, поскольку в НИОКР все принимали совместное участие. Причем Гюнтер Вирц и Герберт Тиме, как и их предыдущий руководитель по немецкому атомному проекту штандартенфюрер СС Манфред фон Арденне, становятся дважды лауреатами Сталинской премии. Об этом факте сейчас мало кто вспоминает. А ведь именно штандартенфюрер СС Манфред фон Арденне находился во главе большого коллектива немецких и советских ученых, инженеров, лаборантов, создавших технологию производства урана-235, своеобразный «ядерный фарш» для первой советской атомной бомбы.

В последние дни войны в мае 1945 года частная атомная лаборатория штандартенфюрера СС Манфред фон Арденне добровольно сдалась советским войскам. Вместе с фон Арденне в Москву были «этапированы» свыше двухсот его коллег, около половины из них являлись докторами наук. Кстати говоря, начальник дозиметрической службы Уральского политехнического института Худенский (Штейн) с бывшим штандартенфюрером СС Манфредом фон Арденне принимал непосредственное участие в совместных научных разработках. Как и в случае с Тимофеевым-Ресовским, Худенский (Штейн) в процессе работы с академиком Манфредом фон Арденне свободно общался на немецком языке.

По некоторым источникам в советском атомном проекте участвовало около 7000 немецких ученых, инженеров и лаборантов. Каким бы талантливым ученый-физик или ученый-химик не был, без обычных помощников в лице инженеров, лаборантов он ничего не стоит. К концу 1955 года все немецкие специалисты, принимавшие участие в заложении основ советских ядерных технологий, вернулись в Германию. Таким образом, старший лаборант лаборатории №5 НИИ Главгорстроя Колеватов в течение двух лет работал в творческом сообществе специалистов, среди которых были не только советские ученые химики, физики, инженеры, работники НКВД. Но и доктора научного отдела резервных войск СС. При этом не имеет особого значения, где числились по штату немецкие лаборанты, инженеры и ученые, в самой лаборатории или секретном заводе №12 (г. Электросталь). Процесс получения металлического урана, плутония и их сплавов осуществлялся в экспериментальных лабораториях Октябрьского поля и в цехах завода…

Во время учебы на третьем курсе физико-технического факультета УПИ в период с 1 сентября по 11 октября 1958 года Колеватов проходит производственную практику на Березниковском азотно-туковом комбинате. Руководитель практики – старший преподаватель кафедры №23 физтеха П.Е.Суетин. Тема научных работ (дипломный проект, кандидатская диссертация) Суетина связана с поиском технологии центробежного производства обогащенного урана. Обе работы были защищены под руководством академика И.К.Кикоина в закрытой Лаборатории №2 (Курчатовский институт)…

В процессе технологии получения урана на горно-обогатительных фабриках с конвейера сходит три вида обогащенного продукта: низкообогащенный, высокообогащенный и обедненный. Уран с содержанием изотопа урана-235 до 20% называют низкообогащенным. Уран с обогащением до 20% находит применение в научно-исследовательских и экспериментальных ядерных реакторах. Уран с содержанием изотопа урана-235 свыше 20% называют высокообогащенным или оружейным. Высокообогащенный уран используется в качестве начинки термоядерного оружия, в реакторах космических аппаратов, на корабельных реакторах. На горно-обогатительных фабриках в отвалах остается обедненный уран с содержанием изотопа урана-235 от 0,1 до 0,3%. Термин «обогащение» означает повышение процента расщепляющего изотопа урана-235 по отношению к урану природному.

В немецком атомном проекте ведущий физик-теоретик Вернер Гейзенберг своими расчетами установил, что существуют два основных способа вызывающие цепную реакцию распада в уране: либо, повышать концентрацию изотопа уран-235 до критической массы, так называемое обогащение урана, либо изменять скорость вылетающих нейтронов таким способом, чтобы атомы урана-238 не были способны поглощать их. Первый способ (обогащение урана) для немецкой промышленности был крайне не выгоден в экономическом отношении, да и технологиями обогащения Германия не располагала. Поэтому немецкие физики, для того чтобы «урановая машина» заработала, пошли по второму пути. В качестве эффективного замедлителя необходимо было вещество способное замедлять нейтроны. Лучшим замедлителем оказалась «тяжелая вода», такая вода, в которой атомы водорода заменены его тяжелым изотопом – дейтерием.

После добровольного «пленения» немецкой атомной лаборатории фон Арденне в 1945 году в нашей стране огромными темпами развернулось производство тяжелой воды. Реактор с тяжелой водой, которая, как и графит, является замедлителем нейтронов в котле, более простой по конструкции, чем уран-графитовый и требует в 10 раз меньше металлического урана. Однако котел «уран+тяжелая вода» более энергоемкий в теплотехническом отношении. Получение тяжелой воды в промышленных масштабах значительно труднее, чем получение урана из рудного концентрата. По этой причине установки для получения тяжелой воды сложные, громоздкие по конструкции и требуют большого количества энергии. Во второй половине 1945 года советское правительство принимает решение о производстве тяжелой воды, которая шифровалась в документах под наименованием «гидроксилин». Начинается строительство и монтаж цехов «Г» на многих заводах нашей страны. МВД СССР в лице тов. Комаровского и тов. Завенягина было поручено в короткие сроки (1946—1948) осуществить строительные и монтажные работы цеха «Г» на Березниковском азотно-туковом заводе. Всего в Советском Союзе было запущено 11 цехов производства гидроксилина – тяжелой воды.

Помимо выпуска тяжелой воды на Березниковском азотно-туковом заводе накануне прибытия Колеватого с научным руководителем на производственную практику были запущены два новых цеха – хлорбензола и металлического натрия.

Атомная электростанция «эксплуатирует» ядра тяжелых химических элементов – урана и плутония. При расщеплении ядер выделяется энергия. Реакция расщепления происходит следующим образом. Ядро урана самопроизвольно распадается на несколько осколков, среди которых имеются частицы высокой энергии – нейтроны. Как правило, на каждые 10 распадов приходится 25 нейтронов. Нейтроны попадают в ядра пограничных атомов и разбивают их. При этом высвобождаются новые нейтроны и огромное количество тепла. При расщеплении 1 грамма урана выделяется примерно столько же тепла, сколько при сжигании трех тонн каменного угля. Пространство в атомном реакторе, где содержится ядерное топливо (уран), называют активной зоной. Здесь происходит расщепление атомных ядер урана и выделяется тепловая энергия. Образующееся тепло из ядерного реактора выводится при помощи жидкого или газообразного теплоносителя. Теплоноситель прокачивается мощными насосами через активную зону ядерного реактора, «экспроприирует» у ядерного топлива тепло и передает его в теплообменник. Такая замкнутая система с теплоносителем носит название первого контура. В теплообменнике тепло первого контура нагревает до кипения воду второго контура. В результате образуется пар, который направляют в турбину или используют для централизованного теплоснабжения промышленных и жилых зданий на базе комбинированного производства. Так вот, в качестве теплоносителя первого контура может быть вода, металлический натрий или газообразные вещества…

На web-проекте «Областной газеты» Свердловской области в №15 от 27.01.2017 года опубликовано интервью директора Белоярской АЭС Ивана Сидорова о работе уникального уральского реактора. Вот что пишет корреспондент издания Татьяна Ладейщикова: «В городе Заречном расположен уникальный промышленный объект, подобного которому нет, не только в России, но и в мире. Это атомная электростанция на быстрых нейтронах. Вокруг неё всегда витал ореол секретности, но специально для «ОГ» завесу тайны приоткрыл директор Белоярской АЭС Иван Сидоров.

– Иван Иванович, атомная энергетика занимает особое место в энергосистеме нашей страны, но, говорят, что у Белоярской АЭС – своё место даже в атомной энергетике.

– Это правда. Почему, постараюсь объяснить. Всего в России 10 АЭС, на которых действуют 35 энергоблоков. Все они в основном тепловые, то есть на медленных нейтронах: 18 – водо-водяные (ВВЭР), 15 построены на основе канальных графитовых реакторов. Топливом для них служит уран-235. Особенность Белоярской АЭС в том, что здесь работают два реактора, способные производить электроэнергию по другому принципу – путём применения реакции деления на быстрых нейтронах. Они вовлекают в цикл наиболее распространённый в природе изотоп урана-238. Оба энергоблока созданы по уникальным проектам. Блок с реактором БН-600 отлично работает уже более 36 лет. Блок с БН-800 включён в энергосистему в декабре 2015 года, а в прошлом году сдан в промышленную эксплуатацию.

– Если существуют типовые реакторы, зачем нужны какие-то другие?

– Реакторы на быстрых нейтронах имеют большие преимущества для развития атомной энергетики, обеспечивая замыкание ядерно-топливного цикла. За счёт полного использования в них уранового сырья увеличивается топливная база: они нарабатывают новое топливо для себя и других реакторов. Они позволяют после определённой переработки использовать отработанное топливо, которое остаётся от тепловых реакторов – то есть запускать его в цикл снова и снова получать электроэнергию. А благодаря «выжиганию» в них опасных радионуклидов  уменьшится объём радиоактивных отходов. От исследований до промышленной эксплуатации пройден огромный исторический путь. Первые исследовательские реакторы на быстрых нейтронах появились в нашей стране в конце пятидесятых годов. С тех пор наработан уникальный опыт, который не могут повторить ни в одной стране мира.

– То есть быстрых реакторов, вырабатывающих электроэнергию в промышленных масштабах, кроме БАЭС, нигде больше нет?

– Действующих нет. Довести научные разработки до промышленной эксплуатации, а тем более 36 лет успешно эксплуатировать «быстрый» реактор, смогла только Россия, точнее БАЭС.

– Интересно, почему? Вроде на Западе неглупые люди…

– Конечно, неглупые, – улыбается Иван Иванович, – а вот не могут. Всё дело в уникальном проекте, создать который, увязать все тонкости и особенности производственного цикла, обеспечить высочайшую степень защиты и безопасности способны только наши специалисты.

– Вы хотите сказать, что дело в научной школе?
<< 1 2 3 4 5 6 7 8 >>
На страницу:
5 из 8