Оценить:
 Рейтинг: 0

Studies in the Theory of Descent, Volume II

Год написания книги
2017
<< 1 ... 8 9 10 11 12 13 14 15 16 ... 21 >>
На страницу:
12 из 21
Настройки чтения
Размер шрифта
Высота строк
Поля

Now according to this law, each step in phyletic development when replaced by a later one, must remain preserved in the ontogeny, and must therefore appear at the present time as an ontogenetic stage in the development of each individual. But my interpretation of the transformation of the Axolotl appears to stand in contradiction to this, since the Axolotl, which at a former period was an Amblystoma, retains nothing of the latter in its ontogeny. The contradiction is, however, only apparent. As long as we are concerned with an actual advance in development, and therefore with the attainment of a new step never formerly reached, the older stages will be found in the ontogeny. But this is not the case when the new stage is not an actual novelty, but formerly represented the final stage of the individual development; or, in other words, when we are concerned with the reversion, not of single individuals, but of the species as such, to the preceding phyletic stage, i. e. with a phyletic degeneration of the species. In this case the former end-stage of the ontogeny would be simply eliminated, and we should then only be able to recognize its former existence by its occasional appearance in a reversion form. Thus, under certain conditions the Triton sinks back to the perennibranchiate stage; not in such a manner that the individual first becomes a Triton and then undergoes perennibranchiate re-modification, but simply, as I have already shown above, by its remaining at the Ichthyodeous stage and no longer attaining to the Salamander form. So also, according to my hypothesis, the salamandrine Amblystoma Mexicanum, formerly inhabiting the shores of the Lake of Mexico, has degenerated to the perennibranchiate stage, and the only trace that remains to us of its former developmental status is the tendency, more or less retained in each individual, to again ascend to the salamander stage under favourable conditions.

The third and last consequence which my interpretation of the facts entails, is the change in the part played by reversion in organic nature. Whilst atavistic forms have hitherto been known only as isolated and exceptional cases, interesting indeed in the highest degree, but devoid of significance in the course of the development of organic nature, a real importance in this last respect must now be attached to them.

I may assume that reversion can in two ways be effectual for the preservation or re-establishment of a living form. In the first place, where, as in Axolotl, the new and organically higher form becomes untenable through external influences, instead of simply perishing – since advancement in another direction does not appear to be possible – a reversion of the species to the older and more lowly organized stage occurs. In the second place, the older phyletic form may not be abandoned while a newer form is being developed therefrom, but the former may alternate with the latter, as we see in the case of seasonally dimorphic butterflies. It can hardly be objected if I regard the alternation of the summer and winter form in this case as a periodic reversion to the phyletically older (winter) form.

Although the reversion of an entire species, such as I suppose to have been the case with the Axolotl, may be of rare occurrence, this is certainly not the case with periodic or cyclical reversion; the latter plays a very important part in the development of the various forms of alternating or cyclical propagation.[96 - In the province of botany such a case has already been made known by Fritz Müller (Botan. Zeitung, 1869, p. 226; 1870, p. 149). I may be here permitted to quote a passage from the letter in which Dr. Müller calls attention to this interesting discovery. “As a proof of the possibility that a reversion form can again become a persistent character in a species or in the allied form of a particular district, I may refer you to an Epidendrum of the island of Santa Catharina. In all Orchids (with the exception of Cypripedium) only one anther is developed; in very rare cases well-formed anthers appear as reversions among the aborted lateral anthers of the inner whorl. In the Epidendrum mentioned, these are however always present.”]

Postscript

In the previous portion of this essay it was pointed out that the causes to which I attributed the reversion of the hypothetical Amblystoma Mexicanum to the existing Axolotl, did not appear to me to amount to a complete explanation of the phenomenon. In the first place these seemed to me too local, since they could only be applied with any certainty to the Axolotl of the lake of the Mexican capital, whilst the Paris Axolotls obtained from other parts of Mexico still required an explanation. On the other hand, these causes did not appear to me sufficiently cogent. Should we even learn subsequently that the Paris Axolotl is also derived from a salt lake which is exposed to similar winds to the Lake of Mexico, we still have in this peculiarity of the lakes only a cause tending to make it difficult for the larva to undergo metamorphosis, and to reach a suitable new habitat on the land. The impossibility of doing this, or the complete absence of such habitat, does not however follow as a necessary consequence.

It would obviously be a much more solid support for my hypothesis if it were possible to point to some physical conditions of the land which there precluded the possibility of the existence of Amblystomas.

For a long time I was indeed unable to discover such causes, and I therefore concluded the previous portion of this essay and went to press. Afterwards, when residing in one of the highest valleys of our Alps in the Upper Engadine, an idea accidentally occurred to me, which I do not now hesitate to regard as correct after having tested it by known facts.

It happens that in the Upper Engadine there live only such Amphibia as persistently, or at least frequently resort to the water. I found frogs up to nearly 7000 feet above the sea, and Tritons at 6000 feet (Pontresina and Upper Samaden). On the other hand, the land-living mountain salamander, S. Atra,[97 - [This species is interesting as being ovoviviparous, the young passing through the branchiate stage within the body of the mother. Some experiments, which were partially successful, were made by Fräulein v. Chauvin with a view to solve the question whether the branchiate stage could be prolonged by taking the larvæ directly from the mother before birth and keeping them in water. See “Zeit. für wissen. Zoo.” vol. xxix., p. 324. R.M.]] was absent, although suitable stations for this species were everywhere present, and it would have wanted for food as little as do its allies the water-newts. Neither would the great elevation above the sea offer any obstacle to its occurrence, since it occasionally ascends to a height of 3000 metres (Fatiot).[98 - See Fatiot, “Les Reptiles et les Batraciens de la haute Engadine.” Geneva, 1873.]

Now it is well known that the atmosphere of the Upper Engadine,[99 - I can remember at Upper Engadine a peculiar kind of preserved beef, prepared by simply drying in the air; also the mummification of entire human bodies by drying in the open air, as is practised at Great St. Bernard.] like that of other elevated Alpine valleys enclosed by extensive glaciers, is often extraordinarily dry for a long period, a condition which appears to me to explain why the black land-salamander is there absent,[100 - “Faune des Vertébrés de la Suisse,” vol. iii. “Histoire Naturelle des Reptiles et des Batraciens.” Geneva, 1873.] whilst its near water-living ally occurs in large numbers. The skin of the naked Amphibia generally requires moisture, or else it dries up, and the creature is deprived of a necessary breathing apparatus, and often dies as rapidly as though some important internal organ had been removed. Decapitated frogs hop about for a long time, but a frog which escapes from a conservatory and wanders about for one night in the dry air of a room, is found the following day with dry and dusty skin half dead in some nook, and perhaps perishes in the course of another day if left without moisture.

All that we know of the biology of the Amphibia is in accordance with this. Thus, all the land-salamanders of southern Italy avoid the hot and dry air of summer by burying in the ground, where they undergo a summer sleep. This is the case with the interesting Salamandrina Perspicillata,[101 - See Wiedersheim, “Versuch einer gleichenden Anatomie der Salamandrinen.” Würzburg, 1875.] and with the land-living Sardinian Triton, the remarkable Euproctus Rusconii, Gené,[102 - See Gené, “Memorie della Reale Acad. di Torino,” vol. i.] (Triton Platycephalus, Schreiber). With respect to Geotriton Fuscus I learn from Dr. Wiedersheim, who has studied the life conditions of this, the lowest European Urodelan, in its own habitat, that in Sardinia it sleeps uninterruptedly from June till the winter; whilst on the coast of Spezia and at Carrara, where it also occurs, it avoids the summer sleep in a very peculiar manner. It makes use of the numerous holes in the calcareous formation of that region, and for some months in the year becomes a cave-dweller. As soon as the great heat occurs, often in May, it withdraws into the holes, and again emerges in November during the wet weather. In these lurking holes it does not fall into a sleep, but is found quite active, and its stomach, filled chiefly with scorpions, shows that it goes successfully in search of food; the moist air of the holes makes it unnecessary for it to bury in the earth.

In the same sense it appears to me must be conceived the fact that the solitary species of frog of the Upper Engadine, Rana Temporaria,[103 - Rana esculenta never reaches Alpine regions, this species not having been found higher than 1100 meters. (Fatiot, loc. cit., p. 318.)] the brown grass frog, is there much more a frequenter of the water than in the plains. It is true that I can find no remark to this effect in the excellent work of Fatiot, already referred to above, and I am therefore obliged to resort to my own observations, which, although often repeated, have always been carried on for only a short time. I was much struck with the circumstance that the Engadine frogs were to be found in numbers in the water long after the pairing season, which, according to Fatiot, lasts at most to the end of June. In the numerous pools around Samaden I found them in July and August, whilst in the plains they only take to the water at the time of reproduction, and seek winter quarters in the mud on the first arrival of this season. (Fatiot, p. 321.) In the Engadine they have therefore in some measure adopted the mode of life of the aquatic frogs, but this of course does not prevent them from returning in damp weather to their old habits and roving through meadows and woods.

After these considerations had made it appear to me very probable that the dry air of the Upper Engadine accounted for the absence of the black land-salamander, the question at once arose whether the absence of Amblystomas from the Mexican plateau might not perhaps be due to the same cause, i. e. whether such a dryness of the atmosphere might not perhaps prevail also in that region, so that Amphibia, or at least salamander-like Amphibia, could not long exist on the land. The height above the sea is still greater (7000 to 8000 feet), and the tropical sun would more rapidly dessicate everything in a country poor in water.

As I was at the time without any books that might have enlightened me on the meteorological conditions of Mexico, I wrote to Dr. v. Frantzius, who, by many years residence in Central America was familiar with the climate of this region, and solicited his opinion. I received the reply that on the high plains of Mexico an extraordinary dryness of the atmosphere certainly prevails. “The main cause of the dryness of the high plains is to be found in the geographical position, the configuration of the land, and the physical structure. The north-eastern trade-wind drives the clouds against the mountains, on the summits of which they deposit their moisture, so that no vapour is carried over; as long as the north-east trade-wind blows, the streams feeding the rivers flowing into the Atlantic Ocean are abundantly fed with water, whilst on the western slopes, and especially on the high plains, the clouds give no precipitation. In the second half of the year also, during our summer, the so-called rainy season brings but little rain[104 - See also the excellent work upon Mexico by Mühlenpfordt already quoted, vol. i., pp. 69–76.]– little in comparison with the more southern regions, where the heavy tropical thunderstorms daily deluge the earth with water. Mexico lies much too northerly, and does not reach the zone of calms, within which region these tropical rains are met with.”

Thus, in the high degree of dryness of the air lasting throughout the year, I do not doubt that we have the chief cause why no Amblystomas occur on these elevated plains; they simply cannot exist, and would become dried up if taken there, supposing them not to be able to change their mode of life and to take to the water. If therefore in former times Amblystomas inhabited Mexico, the coming on of the existing climatic conditions left them only the alternative of becoming extinct, or of again taking to the aquatic life of their Ichthyodeous ancestors. That this was not directly possible – that the Amblystoma form was not able to become aquatic without a change of structure, is shown by the fact that even in the Lake of Mexico no Amblystoma occurs. A retreat to an aqueous existence could, as it appears, only be effected by complete reversion to the Ichthyodeous form, which then also took place.

But my hypothesis of the transformation of the Axolotl not only requires the proof that Amblystomas cannot exist under present conditions in Mexico, but also the further demonstration that at a former period other conditions prevailed there, and these of such a nature as to make the existence of land-salamanders possible.

With respect to my question, whether we might not perhaps assume that at some post-glacial period the conditions of atmospheric moisture on the high plains of Mexico were essentially different from those at present prevailing, I recollected Dr. v. Frantzius and the above-quoted observation of Humboldt’s,[105 - “Essai politique sur le Royaume de la Nouvelle Espagne,” 1805, p. 291.] who discovered in the neighbourhood of the Lake of Tezenco (Mexico) distinct evidence of a much higher former level of the water. “All such elevated plains were certainly at a former period so many extensive water-basins, which gradually became filled, and are still filling up with detritus. The evaporation from such large surfaces of water must at that time have caused a very moist atmosphere, favourable to vegetation and adapted for the life of naked Amphibia.”

From this side also my hypothesis thus receives support, and we may assume with some certainty that at the beginning of the diluvial period[106 - [The expression made use of by the author, viz. “Diluvialzeit,” would perhaps be more in harmony with the views of English geologists if rendered as the “pluvial period,” thereby indicating the period of excessive rainfall which, according to Mr. Alfred Tylor, succeeded to and was a consequence of the thawing of the great glaciers which accumulated during the last glacial epoch. There is abundant evidence to show that during the latter period glacial action extended in North America at least as far south as Nicaragua. See Belt on “The Glacial Period in North America,” Trans. Nova Scotian Inst. of Nat. Sci. 1866, p. 93, and “The Naturalist in Nicaragua,” pp. 259–265. R.M.]] the woods surrounding the Mexican lakes were inhabited by Amblystomas, which, as the lakes subsequently became more and more dried up and the air continually lost moisture, found it more difficult to exist on the land. They would at length have completely died out, had they not again become aquatic by reversion to the Ichthyodeous form. It may perhaps be supposed that the above-mentioned physical conditions – desolate, salt-incrusted shores – co-operated in the production of the reversion, by making it difficult for the larvæ to quit the water; but we can only judge with certainty upon this point when, by means of experiment, we have discovered the causes which produce reversion in the Amphibia.

Addendum

I have lately met with another interesting notice on the reproduction of the native North American Amblystomas. Professor Spence F. Baird, of Washington, has often observed the development from the egg of various species, and especially of Amblystoma Punctatum and A. Fasciatum. His observations do not appear to be as yet published, so that I was unable to discover any account of the development of Amblystoma in existing literature.[107 - [Eng. ed. A memoir by Samuel Clarke has since been published upon the embryonic development of Amblystoma punctatum, Baird. Baltimore, 1879.]] I am authorized to extract the following brief data from a letter addressed to Dr. v. Frantzius.

In order to deposit their eggs the Amblystomas go into the water, where the eggs are laid enclosed in a jelly-like mass, but never more than fifteen to twenty together. The spherical eggs are very large, perhaps a quarter of an inch in diameter. They soon develop into a Siredon-like larva, which remains several months in this condition. The gills then shrivel up, the creature begins to crawl, and gradually passes through the different transformations to the complete Amblystoma form.

It appears from this communication that the Amblystomas lay much larger and much fewer eggs than the Axolotl, and that their development throughout resembles that of our salamanders.

In concluding I may mention an anatomical fact which most strongly supports my view that the Mexican Axolotl is a reverted Amblystoma. I learn from Dr. Wiedersheim that the Axolotl possesses the “intermaxillary gland” which occurs in all the land Amphibia. This organ, lying in the intermaxillary cavity, appears, whenever it occurs, to produce a kind of birdlime, i. e. a very glutinous secretion, which serves to attach the prey to the rapidly protrusible tongue. Although this secretion may perhaps also have another function, from the absence of the intermaxillary gland in all exclusively aquatic Amphibia, it follows that it must be devoid of importance for, and inapplicable to feeding in the water. The intermaxillary gland is absent in all Perennibranchiata and Derotremata which Wiedersheim has hitherto investigated, viz. in Menobranchus, Proteus, Siren, Cryptobranchus, Amphiuma, and Menopoma, all of which are indeed without the cavity in which the gland is situated in the Salamandrina, i. e. the cavum intermaxillare.

Now in the Salamandrina the gland appears at an early stage. It is possessed in a well-developed state by the larvæ both of species of Triton and of Amblystoma, where indeed the glandular structure completely fills the cavum intermaxillare.

Were the Axolotl a species retarded in phyletic development, the presence of a gland which does not occur in any other Perennibranchiata, and which is only of use for life upon land, would be quite inexplicable.

The matter becomes still more enigmatical through the fact that the gland, although present, is quite rudimentary. Whilst in the Salamandrina the capacious intermaxillary cavity is entirely filled by the tubes of the gland in question, in Axolotl this cavity is almost completely filled with a closely woven connective tissue, in which there can only be found a small number of gland-tubes – in the extreme front, and at the base immediately over the intermaxillary teeth – these tubes agreeing in the details of their histological structure with the elements of the same gland in the Salamandridæ.

I give these anatomical details from Dr. Wiedersheim’s verbal communication. An amplified account will subsequently appear in another place.[108 - [Eng. ed. See this author’s work, “Das Kopfskelet der Urodelen.” Leipzig, 1877, p. 149.]]

An explanation of this rudimentary intermaxillary gland in the Axolotl only appears to me possible on the supposition that the latter is an atavistic form. From this point of view it is evident that the gland already present in all Amblystoma-larvæ must have been taken over by the perennibranchiate form of the existing Axolotl, through the reversion of the hypothetical Amblystoma Mexicanum of the “diluvial period.”[109 - [See preceding note 52. R.M.]] It can also be easily understood that this organ would become more and more rudimentary in the course of time, since it has no further use in the water, and the gap thus arising in the formerly present cavum intermaxillare would become filled with connective tissue.

While the German edition of this work was going through the press I obtained, through the kindness of my friend Dr. Emil Bessels of Washington, the Mexican memoir upon the new Axolotl,[110 - See note 226 (#cn_55), p. 566 (#Page_566).] which even in Mexico regularly, or at least in many cases, becomes developed into the Amblystoma form.

The facts are briefly as follows: – The small Lake of Santa Isabel is some hours’ journey from the Mexican capital. In this lake there lives a species of Axolotl which had hitherto remained unknown, and was described by Señor Velasco as Siredon Tigrinus. This species propagates itself indeed in the Axolotl state, but in many cases it becomes transformed into Amblystoma and takes to the land. Although propagation in the Amblystoma condition was not observed, it can hardly be doubted that it also propagates in this form.

At first sight these facts appear to refute my hypothesis, that the extreme dryness of the air of the Mexican plateau precludes the existence of land Amphibia. Nevertheless I do not abandon this hypothesis for the former one, since a closer study of the data furnished by Velasco confirms rather than refutes my supposition.

Velasco expressly corroborates the statement that the Axolotl hitherto known from the great Mexican lake which never dries up (Lake of Xochimilco and Chalco), is only met with in its native habitat in the Siredon form, i. e. as Siredon Humboldtii. According to Velasco the cause of the frequent assumption of the Amblystoma form by the new Siredon Tigrinus, is to be found in the local conditions of life of this species. The Lake Santa Isabel is shallow, its greatest depth amounting to three meters, and it is liable to a periodical drying up, which is so complete that one can pass dry-shod through it in several places. The species must therefore have long since died out had it not been able to adapt itself periodically to a land life. Now it could have become transformed into a land Amphibian – as Señor Velasco observed – at various stages of growth; and indeed this author believes that “the Creator has implanted an instinct in this creature,” which enables it to always undergo metamorphosis at the right time.

This last assumption may or may not be taken as correct, but this much is established, viz. that numerous individuals of this species take to the land, and remain there during a period of many months.

But does this contain the proof that salamander-like animals are actually able to lead a land life in Mexico – that the dry air is advantageous, or at least supportable to them? It does not appear so to me, but rather that all which has been reported of this Amblystoma by Señor Velasco goes to show that the animal does not, properly speaking, live upon land like the North American Amblystomas, or like our land-salamanders, but that it only experiences a summer sleep lasting over the period of drought. These Amblystomas were observed as they left the dried-up lake at night in order to seek some moist lurking-place in the neighbourhood, where they might remain concealed. They are only known in the villages situated near the lake, and were only seen there at large just when they were wandering from the lake to their place of concealment. At other times they were mostly found in the earth, buried under walls, the pavement of the market-place, &c. When laying down a line of railway, a workman found in the earth a whole nest of twelve Amblystomas lying close together. All these are not mere lurking-holes which could be abandoned at any moment; it would rather appear that we have here places of refuge for the entire duration of the period of drought, and that these would only be forsaken when the water of the rainy season penetrated the soil. I am not myself in a favourable position for investigating these suppositions more closely, but this could be done by Señor Velasco, who lives in Mexico, and science would be much indebted to him if he would examine as precisely as possible into the habits and conditions of life of this, and of the other species of Mexican Axolotls. Unfortunately this gentleman can, it would appear, have seen only the French publications upon the transformation of the Axolotl, and could not therefore have asked himself questions arising from my conception of the facts; otherwise many of his observations would have led to more definite results. The above conclusion can however be still further supported by Señor Velasco’s data.

One might indeed insist that with us also the land-salamanders conceal themselves in moist places during dry weather, and often lie hidden, as in Mexico, in a hole, in a cluster of as many as ten together; but with us they leave their lurking-place from time to time and go in search of food. Señor Velasco mentions nothing with respect to this. What especially struck me was the statement that the Mexican Amblystomas were also to be found in the water.[111 - [Prof. Semper also remarks (“Animal Life,” note 47, p. 430) with reference to the Axolotl of Lake Como in the Rocky Mountains, which he states always becomes transformed into Amblystoma Mavortium, that this metamorphosis “takes place in the water, and the Amblystomas, so long as they are little, actually live exclusively in the water, as I know by my own experience. A young Amblystoma which I kept alive for a long time, never went out of the water of its own free will, while one nearly twice as large lives entirely on land and only takes a bath now and then. It always goes into the water when the temperature of the air in the cellar, in which my aquaria stand, falls below that of the water – down to about 6° or 8 °C.” This statement appears to suggest that the effect of temperature may be a factor in some way concerned in these interesting cases of transformation, and would in any case be well worthy of experimental investigation. Some further details concerning the Siredon Lichenoides of Lake Como have been recently published by Mr. W. E. Carlin (Proc. U.S. National Museum, June, 1881). The lake, which is shallow, is fed by a constant stream of fresh water, but the water of the lake is intensely saline. The Siredon never enter the fresh water stream, but congregate in large numbers in the alkaline waters of the lake. “When about one hundred and fifty were placed in fresh water they seemed to suffer no inconvenience, but it had a remarkable effect in hastening their metamorphosis into the Amblystoma form. Of an equal number kept in fresh water and in the lake water, quite a change occurred with the former after twenty-four hours, while the latter showed no change after several days of captivity. Those that were kept well fed in jars usually began to show a slight change in from two to three weeks, and all of them completed the change into the Amblystoma inside of six weeks, while in some kept, but not specially fed, there were but three changes in three months.” (Nature, Aug. 25th, 1881, p. 388.) R.M.]] When Lake Santa Isabel is drained, the fishermen stretch large nets across the exit channels, and in these they not only find ordinary Axolotls, but also some “sin aretes,” which they also designate “mochos,” i. e. hornless Axolotls, because they have no gills, but have already reached the Amblystoma stage. Our land-salamanders live in the water only as larvæ, but they also love and require moisture. Only the female enters the water when she wants to deposit her young (eggs with mature larvæ), and then only at the margin of shallow pools or small brooks. The Mexican Amblystoma thus much more resembles in its habits our water-salamanders (Tritons), which remain in the water at least during the whole period of reproduction. These also leave the water later, and, like the land-salamander, seek concealment in the earth. They have this habit also in those districts which possess a very dry atmosphere; and especially in the Engadine, where I first conceived the idea of taking into account the dryness of the air, I found in the pools at the end of August and the beginning of September only larvæ of Tritons. The older Amphibians must therefore have been on the land, presumably in their places of winter concealment.

From what we have hitherto learnt from Señor Velasco, the mode of life of Amblystoma Tigrinum must resemble that of our Tritons, although its structure is that of a land-salamander. I would thus offer the following explanation of the facts at present known: – Owing to the periodic drying up of the lake of Santa Isabel, the Siredon Tigrinus would be again compelled to undergo metamorphosis. Whether this was formerly entirely abandoned, or whether it always occurred in solitary individuals, is almost immaterial; in any case the habit of metamorphosis must have been very rapidly acquired through natural selection, and must have again become general, if the faculty was only present in the species, although latent. Through the dryness of the air, the Amblystomas that had taken to the land would be compelled to bury themselves at once, and to remain asleep till the recurrence of the rainy season, when they would hasten back into the water and would there live as a species of Triton.

Now one might feel inclined to ask why the species of the great Mexican lake has not also taken to this mode of life. To this it may be simply replied that the water of this lake never dries up, and that the Axolotls have thus never been reduced to the alternative of undergoing metamorphosis or of perishing. If therefore the conditions of existence in water were more favourable than on land, the tendency to abandon metamorphosis would increase from generation to generation, and the deportment at present observed would finally result, i. e. propagation would take place exclusively in the Axolotl state. As has already been mentioned above, the latest observations of Velasco furnish further confirmation that the Axolotl of the great lake is never met with in the Amblystoma condition, “although it (the Axolotl) is brought daily from Mexico into the market throughout the whole year.” I should not however regard it as a refutation of my view if prolonged investigation should show that this species also (Siredon Humboldtii) occasionally developed into an Amblystoma; on the contrary, it would not at all surprise me if such cases of reversion occurred in Mexico as well as in Europe. The fact that an immense majority of the Amphibians propagate in the Axolotl state would not be thereby affected, and would still require an explanation: this I am still inclined to see in the dryness of the air of the high plains, which is so unfavourably adapted for a life passed entirely on land.

IV. ON THE MECHANICAL CONCEPTION OF NATURE

INTRODUCTION

In the first of the three preceding essays it was attempted to solve the question whether the transformations of a given complex of characters in a certain systematic group could be completely explained by the sole aid of Darwinian principles. It was attempted to trace the origin of the marking and colouring of the Sphinx-caterpillars to individual variability, to the influences of the environment, and to the laws of correlation acting within the organism. These principles as applied to the origin of a certain well-defined, although narrowly restricted range of forms, were tested in order to see whether they were alone sufficient to explain the transformation of the forms.

It appeared that this was certainly the case. In all instances, or at least where the facts necessary to obtain a complete insight were available, the transformations could be traced to these known factors; there remained no inexplicable residual phenomena, and we therefore had no reason for inferring the existence of some still unknown modifying cause lying concealed in the organism. In this region of the marking and colouring of caterpillars, the assumption of a phyletic vital force had to be abandoned, as being superfluous for the explanation of the facts.

In the second essay the attempt was next made with reference to double form-relationship, as presented for observation in metamorphic insects, to draw conclusions as to the causes of the transformations. It appeared here that form- and blood-relationship do not always coincide, since the larvæ of a species, genus, or family, &c., may show quite different form-relationships to their imagines. These facts alone told very decisively against the existence of an internal developmental power, so that the latter had likewise to be set aside by the method of elimination, since the observed incongruences as well as the congruences of form-relationship, found sufficient explanation in the action of the environment on the organism.

This investigation thus also led to the denial of a phyletic vital force.

In the third essay I finally sought to prove that the only case of transformation of one species into another at present actually observed[112 - [Some experiments on the transformation of the Crustacean Artemia Salina into A. Milhausenii by gradually increasing the saltness of the water, and conversely, the transformation of A. Milhausenii into A. Salina by diminishing the saltness of the water, have been made by Schmankewitsch (Zeitschrift f. wiss. Zool. xxv. Suppl. 103 and xxix. 429), but the changes which occur here are much less considerable than in the case of the Axolotl. R.M.]], could not without further evidence be interpreted as the result of the action of a phyletic vital force, but that more probably we had here only an apparent case of new formation, which was in reality but a reversion to a stage formerly in existence.

If this last investigation removes the only certain observation which could have been adduced in favour of the hypothesis of a phyletic vital force, so also do the two former essays show that this hypothesis, at least in the case of insects, must be abandoned as inadequate.

The question now arises whether this conclusion, based on such a limited range of inquiry, can also be applied to the other groups of the organic world without further evidence.

The supporters of a principle of organic development will deny this in each individual case, and will demand special proof for each group of organisms; I believe this position, however, to be incorrect. Here, if anywhere, it appears to me justifiable to apply the conclusions inductively from special cases to general ones, since I cannot at all see why a power of such pre-eminent and fundamental importance as a phyletic vital force should have its activity limited to solitary groups in the organic world. If such a power exists it must be the inciting cause of organic development in general, and must be equally necessary in every part of creation, as no advancement could take place without it. In this case, however, the force would be recognizable and demonstrable at every point; the phenomena should nowhere stand in opposition to its admission, and should in no case be explicable or comprehensible without it. The same laws and forces which caused the development of one group of forms must underlie the development of the whole organic world.

I therefore believe that we are correct in applying to the whole living world the results furnished by the investigation of insects, and in thus denying the existence of an innate metaphysical developmental force.

There is, however, a quite distinct method which leads to the same results, and to the preliminary, if not to the complete and definitive rejection of such a principle; the admission of this power is directly opposed to the laws of natural science, which forbid the assumption of unknown forces as long as it is not demonstrated that known forces are insufficient for the explanation of the phenomena. Now nobody will assert that this has in any case been proved; the test of applying the known factors of transformation has only just commenced, and wherever it has been made they have proved sufficient as causal forces. Thus, even without the foregoing special investigations we should deny a phyletic vital force; the more so as its admission is fraught with the greatest consequences, since it involves a renunciation of the possibility of comprehending the organic world. We should, on this assumption, at once cut ourselves off from all possible mechanical explanation of organic nature, i. e. from all explanation conformable to law. But this signifies no less than the renunciation of all further inquiry; for what is investigation in natural science but the attempt to indicate the mechanism through which the phenomena of the world are brought about? Where this mechanism ceases science is no longer possible, and transcendental philosophy alone has a voice.

This conception represents very precisely the well-known decision of Kant: – “Since we cannot in any case know à priori to what extent the mechanism of Nature serves as a means to every final purpose in the latter, or how far the mechanical explanation possible to us reaches,” natural science must everywhere press the attempt at mechanical explanation as far as possible. This obligation of natural science will be conceded even by those who lay great stress upon the necessity for assuming a designing principle. Thus, Karl Ernst von Baer states that we have no right “to assert of the individual processes of Nature, even when these evidently lead to a definite result, that some Mind has originated them designedly. The naturalist must always commence with details, and may then afterwards ask whether the totality of details leads him to a general and final basis of intentional design.”[113 - “Reden und kleinere Aufsätze, Th. II.: Studien aus dem Gebiete der Naturwissenschaften.” St. Petersburg, 1876, p. 81.]
<< 1 ... 8 9 10 11 12 13 14 15 16 ... 21 >>
На страницу:
12 из 21