Вероятно, для вас не составит затруднения объяснить причину столь странного на первый взгляд явления: центробежная сила, стремящаяся удалить вращающееся тело от центра, настолько велика в данном случае, что превышает силу тяжести – естественно, что вода не выливается.
Рис. 29. Вода не выливается из стакана, если заставить его достаточно быстро кружиться.
Напоминаю об этом общеизвестном опыте потому, что хочу предложить читателю задачу: с какою скоростью достаточно вращать стакан, чтобы развить центробежную силу, необходимую для успешности опыта?
Вычисление произвести совсем нетрудно, зная, что ускорение центробежной силы =
/
, где v O скорость, а R – радиус круга. Мы хотим, чтобы это ускорение было не меньше ускорения, сообщаемого телу силою тяжести, т. е. не меньше 9,8 метра. Допустим для простоты, что длина веревки, на которой вращается наш стакан, равна 1-му метру. Тогда имеем равенство
/
= 9,8 метра,
из которого ясно, что искомая скорость вращения v = ?9,8 = 3,14 метра в секунду. Так как длина окружности, описанной радиусом в 1 метр, равна 6,28 метра, то чтобы вода не вылилась, наш стакан должен делать полный оборот в 2 секунды. Подобная быстрота вращения вполне достижима, и опыт обыкновенно удается без труда.
Заметьте, что при таком вращении вес стакана все время меняется: в верхней части пути вес его совершенно уничтожается центробежной силой; зато внизу он удваивается, так как здесь центробежная сила прибавляется к нормальному весу тела.
Вы выступаете в роли Галилея
Одно время для любителей сильных ощущений устраивалось весьма своеобразное развлечение – так называемая «чертова качель». В сборнике научных забав Федо оно описано так:
«Качель подвешена к прочной горизонтальной перекладине, перекинутой через комнату на известной высоте над полом. Когда все сядут, особо приставленный к этому служитель запирает входную дверь, убирает доску, служившую для входа, и, заявив, что он сейчас даст возможность зрителям сделать небольшое воздушное путешествие – по-видимому, начинает легонько раскачивать качель. Вслед за тем он садится сзади качели, подобно кучеру в кэбах, или даже совсем выходит из залы.
Рис. 30. Что кажется пассажирам «чертовой качели».
Между тем размахи качели становятся все больше и больше; она, по-видимому, поднимается до высоты перекладины, потом переходит за нее все выше и выше – и, наконец, описывает полный круг. Движение ускоряется все больше и больше, и качающиеся, хотя по большей части уже предупрежденные, испытывают несомненные ощущения качания и быстрого движения; им кажется, что они несутся вниз головой в пространстве, так что невольно хватаются за спинки сидений, чтобы не упасть.
Но вот размахи начинают уменьшаться; качель не поднимается уже более на высоту перекладины, и еще через несколько секунд останавливается совершенно.
На самом же деле качель все время висела неподвижно, пока продолжался опыт, и, напротив, сама комната, с помощью очень несложного механизма вращалась вокруг зрителей или, лучше сказать, вокруг горизонтальной оси. Всякого рода мебель прочно прикреплена к полу или к стенам залы; лампа, припаянная к столу так, что она, по-видимому, легко может перевернуться, состоит из электрической лампочки накаливания, скрытой под большим колпаком. Служитель, который, по-видимому, раскачивал качель, давая ей легкие толчки, в сущности, сообразовал их с легкими колебаниями залы и делал только вид, что раскачивает. Вся обстановка способствует полному успеху обмана».
Секрет иллюзии, как видите, прост до смешного. И всетаки я убежден, что если бы теперь, уже зная, в чем обман, вы очутились на «чертовой качели» – вы неизбежно поддались бы той же иллюзии. Вы знали бы, что висите неподвижно, и, несмотря на это, все-таки чувствовали бы, что вас кружит вниз головой. Такова сила иллюзии! Помните стихотворение Пушкина «Движение»?
Движенья нет, – сказал мудрец брадатый[21 - Греческий философ Зенон Элейский (VI в. до Р. Х.), учивший, что все в мире неподвижно и что только вследствие обмана чувств нам кажется, что какое-либо тело движется.],
Другой[22 - Диоген.] смолчал – и стал пред ним ходить.
Сильнее бы не мог он возразить.
Хвалили все ответ замысловатый.
Но, господа, забавный случай сей
Другой пример на память мне приводит:
Ведь каждый день над нами солнце ходит,
Однако ж прав упрямый Галилей!
Среди ваших соседей по «качели», не посвященных в ее секрет, вы были бы своего рода Галилеем – только навыворот: Галилей доказывал, что небо неподвижно, а кружимся, вопреки очевидности, мы сами; вы же будете доказывать, что мы неподвижны, а вся комната вертится вокруг нас. Возможно, что вам пришлось бы при этом испытать и печальную участь Галилея: вам не поверили бы, вас осыпали бы насмешками, как человека, спорящего против самых очевидных вещей…
Мой спор с вами
Вот вам задача: вообразите, что вы в самом деле очутились в «чертовой качели» и хотите доказать своим соседям, что они заблуждаются. Не думайте, что это будет очень просто. Я предлагаю вам вступить со мной в этот спор. Сядем вместе с вами в «чертову качель», дождемся момента, когда, раскачавшись, она начнет, по-видимому, описывать полные круги, и заведем ученый диспут о том, что кружится: качель или вся комната? Прошу только помнить, что во время спора мы не должны покидать качели; все необходимое захватите с собой, пожалуйста, заблаговременно.
Вы. Как можно сомневаться в том, что мы неподвижны, а вертится комната! Ведь если бы нашу качель опрокинуть вверх дном, то мы с вами не повисли бы вниз головой, а выпали бы из нее. Но мы, слава Богу, не падаем. Значит, вертится комната, а не качель.
Рис. 31. Что происходит на самом деле.
Я. Однако, вспомните, что вода из быстро кружащегося стакана не выливается, хотя при вращении он и опрокидывается вверх дном (рис. 29). Велосипедист в «чертовой петле» (см. далее) также не падает, хотя и едет вниз головой. И воду, и велосипедиста удерживает центробежная сила. Быть может, и мы вращаемся с такой скоростью, что центробежная сила уничтожает нашу тяжесть.
Вы. Но мы легко можем вычислить центробежную силу и убедиться, достаточна ли она, чтобы уничтожить силу тяжести. Зная наше расстояние от оси вращения и число оборотов в секунду, мы легко определим по формуле…
Я. Не трудитесь вычислять. Владелец «чертовой качели», зная о нашем споре, предупредил меня, что число оборотов будет вполне достаточно, чтобы явление объяснялось по-моему. Следовательно, вычисление на этот раз ничего не докажет: каждый из нас в праве будет оставаться при своем мнении.
Вы. Но я еще не потерял надежду вас переубедить. Видите, вода из этого стакана не выливается на пол… Впрочем, вы и тут сошлетесь на центробежную силу. Хорошо же: вот отвес – он все время направлен к нашим ногам, т. е. вниз. Если бы вертелись мы, а комната оставалась неподвижной, отвес был бы все время обращен к полу, – т. е. вытягивался бы то к нашим головам, то в стороны.
Я. Ошибаетесь: если бы мы вертелись с достаточной скоростью, – именно так, чтобы центробежное ускорение превышало ускорение тяжести, – отвес все время был бы натянут вдоль радиуса вращения, т. е. к нашим ногам. Это мы и наблюдаем.
Вы. Ну, вот вам, наконец, решающий опыт: я роняю свой портсигар за борт нашей качели, и он падает – прямо в потолок! Ясно, что потолок очутился на месте пола, потому что предметы, сколько известно, вверх не падают.
Я. Опять вы забыли о центробежной силе! Ведь она может преодолеть силу тяжести. Следовательно, ваш портсигар вовсе не должен был упасть непременно на пол: центробежная сила может отбросить его, вопреки силе тяжести, и на потолок и на стены.
Вы. Если так, то я вас поймал вашей центробежной силой. Вы говорите, что комната не вертится, да? Почему же, в таком случае, мой портсигар продолжает спокойно лежать на потолке, а не падает с него на пол?
Я. Меня тоже удивляет, что портсигар, уроненный вами на потолок, так и остался лежать на нем. Но если бы вы были правы, т. е. если бы комната вертелась вокруг нас, – портсигар должен был перекидываться с потолка на пол и на стены.
Вы. Но позвольте: ведь это и доказывает, что комната вертится: портсигар удерживается на потолке тою же центробежною силою, которая так долго помогала вам оспаривать меня.
Теперь она заговорила в мою пользу!
Я. Да, но уверены ли вы, что и пол и, потолок, и все стены не покрыты слоем липкого клея, удерживающим упавшие на него вещи? Любезный владелец «чертовой качели», зная о нашем споре, конечно, предусмотрел это и позаботился о том, чтобы спор затянулся подольше. Как видите, и этот довод пока ничего еще не доказывает.
Финал нашего спора
Теперь позвольте посоветовать вам, как одержать победу в этом споре. Надо взять с собой на «качель» пружинные весы, положить на их чашку гирю, например в 1 фунт, и следить за положением указателя: он все время будет показывать один и тот же вес, именно – один фунт. Это и есть бесспорное доказательство неподвижности качели.
В самом деле: если бы мы вместе с пружинными весами описывали круги около оси, то на гирю, кроме силы тяжести, действовала бы также центробежная сила, которая в нижних точках нашего пути прибавлялась бы к весу гири, а в верхних – отнималась бы от него; мы должны были бы замечать, что гиря то становится тяжелее (вдвое с лишним), то почти ничего не весит. А раз этого не заметно, значит – вращается комната, а не мы.
В заколдованном шаре
Один предприниматель (конечно, американец) устроил для развлечения публики очень забавную и даже поучительную карусель в форме шарообразной вращающейся комнаты. Люди внутри ее испытывают такие необыкновенные ощущения, какие мы считаем возможными разве только во сне или в волшебной сказке.
Чтобы понять устройство этого заколдованного шара, вспомним сначала, что испытывает человек, стоящий на быстро вращающейся круглой платформе. Центробежная сила, развивающаяся при ее вращении, стремится отбросить человека наружу; чем дальше вы стоите от центра, тем сильнее будет клонить и тянуть вас наружу. Если вы закроете глаза, вам будет казаться, что вы стоите не на ровном полу, а на наклонной плоскости, на которой с трудом сохраняете равновесие. Это станет понятно, когда рассмотрим, какие силы действуют здесь на ваше тело (рис. 32). Центробежная сила тянет вас горизонтально; тяжесть – тянет вниз; обе силы, складываясь по правилу параллелограмма, дают равнодействующую силу, которая тянет тело наклонно вниз. Чем быстрее вращается платформа, тем больше становится эта равнодействующая и направляется более отлого.
Рис. 32. Что испытывает человек на краю вращающейся платформы. (Платформа изображена в разрезе.)
Представьте же себе теперь, что край платформы загнут вверх, и вы стоите на этой наклонной, отогнутой части. Если платформа неподвижна, вы в таком положении не удержитесь, а сползете или даже опрокинетесь. Другое дело, если платформа вращается: тогда эта наклонная плоскость станет для вас, при известной скорости, как бы горизонтальной, потому что равнодействующая веса и центробежной силы направится тоже наклонно, под прямым углом к отогнутой части платформы[23 - Это, кстати, объясняет, почему на закруглениях железнодорожного пути наружный рельс устраивают выше внутреннего, а также – почему наклоняют внутрь круговую дорожку для велосипедов и почему некоторые велосипедисты-виртуозы могут кататься по круто наклоненному круговому настилу (рис. 34).].
Рис. 33. Человек спокойно стоит на наклонной части вращающейся платформы.
Легко понять, что чем центробежная сила больше, тем под большим углом должна быть наклонена платформа, чтобы находящийся на ней человек не упал, – и наоборот. Центробежная же сила, как известно, возрастает с удалением от оси. Если вращающейся платформе придать такую кривизну, чтобы при определенной скорости угол наклона ее поверхности в каждой точке соответствовал направлению равнодействующей, то помещенный на ней человек будет чувствовать себя во всех ее точках, как на горизонтальной плоскости. Математическим вычислением найдено, что такая кривая поверхность есть внутренняя поверхность особого геометрического тела – параболоида. Эту поверхность можно получить, если быстро вращать вокруг своей оси стакан, до половины налитый водою: тогда вода у краев поднимется, а в центре опустится, и поверхность ее примет форму параболоида.