Оценить:
 Рейтинг: 4.6

Занимательная физика. Книга 2

Год написания книги
1916
<< 1 ... 3 4 5 6 7
На страницу:
7 из 7
Настройки чтения
Размер шрифта
Высота строк
Поля
Рис. 34. Велосипедист, едущий по наклонной круговой дорожке, удерживается в равновесии центробежной силой.

Если вместо воды в стакан налить растопленный воск и продолжать вращение до тех пор, пока воск не остынет, то затвердевшая поверхность его даст нам точную форму параболоида. При известной скорости вращения такая поверхность является для тяжелых тел как бы горизонтальной: шарик, положенный в любую ее точку, не скатывается вниз, а остается в равновесии (рис. 35).

Теперь легко будет понять устройство заколдованной сферы. Дно ее (см. рис. 36) составляет большая вращающаяся платформа, которой придана кривизна параболоида. Хотя вращение, благодаря скрытому под платформой механизму, совершается чрезвычайно плавно, но все же люди на платформе испытывали бы головокружение, если бы все окружающие предметы не перемещались вместе с ними. Чтобы избежать этого и не дать возможности наблюдателю догадаться, что он движется, вращающуюся платформу помещают внутри большого шара, непрозрачные стенки которого движутся с такою же скоростью, как и сама платформа.

Рис. 35. Если этот бокал вращать с надлежащей скоростью, то шарик не скатится на его дно: равнодействующая (R) силы тяжести (Р) и центробежной силы (С) будет прижимать шарик к стенке.

Рис. 36. Истинное положение людей внутри «заколдованного шара».

Таково устройство «волшебной сферы». Что же испытываете вы, находясь на платформе, внутри сферы? Когда сфера вращается, пол под ногами кажется вам горизонтальным, в какой бы точке кривой платформы вы ни находились – у оси, где пол действительно горизонтален, или у края, где он наклонен на 45 градусов. Если вы перейдете с одного края платформы на другой, то вам покажется, будто весь огромный шар, с легкостью мыльного пузыря, перевалился на другой бок под тяжестью вашего тела: ведь вы во всякой точке чувствуете себя, как на горизонтальной плоскости! Положение же других людей, стоящих в наклонном положении, должно представляться вам до крайности необычайным: вам буквально будет казаться, что люди, как мухи, ходят по стенам.

Вода, вылитая на пол заколдованного шара, растеклась бы ровным слоем по его кривой поверхности. Людям казалось бы, что вода стоит перед ними наклонной стеной…

Еще более удивительные эффекты может создать велосипедист, катающийся внутри этой сферы. Если он станет быстро кружиться на платформе в направлении ее вращения, то развиваемая им центробежная сила присоединится к центробежной силе сферы; вследствие этого, велосипед приобретает такую устойчивость, что может, не опрокидываясь, въезжать на внутренние стенки сферы и кружиться по ним параллельно краям пола. Наблюдателям же на краю платформы будет казаться, что он катится по потолку! Привычные представления о законах тяжести словно отменяются в этом поистине заколдованном шаре, и мы переносимся в сказочный мир чудес…

Рис. 37. Что представляется человеку, находящемуся внутри «заколдованного шара».

«Чертова петля»

Так называется головокружительный велосипедный трюк, нередко исполняемый в цирках: велосипед едет по спирали снизу вверх и описывает полный круг, несмотря на то, что по верхней части круга ему приходится катиться вниз головой. На арене устраивают деревянную дорожку в виде петли с одним или несколькими завитками, как изображено на наших рисунках. Артист съезжает на велосипеде по наклонной части петли, затем быстро взлетает на своем стальном коне вверх, по круговой ее части, совершает полный оборот, буквально вися вниз головой, и благополучно съезжает на землю. Теперь этот цирковой трюк довольно обычен, но лет 60–70 тому назад он был еще новинкой. Мы приводим здесь старинную афишу одного лондонского цирка, относящуюся к 40-м годам прошлого века – едва ли не первое объявление о «чертовой петле» (рис. 38).

Этот головоломный велосипедный фокус кажется зрителям верхом акробатического искусства. Озадаченная публика в недоумении спрашивает себя: какая таинственная сила удерживает смельчака вниз головой? Недоверчиво настроенные готовы подозревать здесь ловкий обман – какие-нибудь искусно скрытые веревки, поддерживающие велосипедиста, или что-нибудь в этом роде.

Рис. 38[24 - * Фут (англ. foot – ступня) – британская, американская и старорусская единица измерения расстояния, равная 30,48 сантиметрам. Не входит в систему СИ. – Прим. изд.]. Самое старое объявление о «чертовой петле». Английская афиша 40-х годов прошлого века.

«Чертова петля» изображена на рисунке неправильно – с такой петли тележка неминуемо должна сорваться. Почему?

Между тем, в этом фокусе нет ничего сверхъестественного. Все объясняется законами механики.

Никакого особенного умения или знания какого-либо секрета от артиста не требуется: бильярдный шар, пущенный по этой дорожке, с не меньшим успехом выполнил бы тот же фокус. На старинном рисунке английской афиши вы видите не велосипед, а простую тележку, скользящую по рельсам.

Наш читатель, конечно, догадывается, какая сила уничтожает здесь вес велосипедиста и его стального коня и прижимает его вниз головой к дорожке «чертовой петли». Это все та же центробежная сила, которая уже объяснила нам несколько загадочных явлений. Однако фокус удается не всегда: необходимо в точности рассчитать высоту, с которой велосипедист должен начать свое движение – иначе центробежная сила может оказаться не достаточной для уничтожения его веса, и тогда фокус может кончиться очень печально.

Рис. 39. Простая «чертова петля».

Математика в цирке

Я знаю, что длинные ряды «бездушных» формул отпугивают весьма многих любителей физики. Но, право же, отказываясь от знакомства с математической стороной явлений, такие недруги математики лишают себя огромного удовольствия заранее предвидеть ход явления и определять все его условия. В данном, например, случае две-три «бездушные» формулы помогут нам в точности определить, при каких условиях возможно успешное выполнение столь удивительного фокуса, как «чертова петля».

Приступим же к расчетам.

Обозначим буквами разные величины, с которыми нам придется вести расчеты:

Буквой h обозначим высоту, с которой скатывается велосипедист.

Буквой r обозначим радиус «петли».

Буквой m – общую массу артиста вместе с велосипедом; вес их выразится тогда через mg.

Буквой g – ускорение силы тяжести на земной поверхности; оно равно 9,8 метра.

Буквой v

обозначим скорость велосипеда в тот момент, когда он достигает конца наклонной дорожки и начинает описывать круг.


<< 1 ... 3 4 5 6 7
На страницу:
7 из 7