Оценить:
 Рейтинг: 0

Теория и практика распознавания инженерных сооружений, промышленных предприятий и объектов железнодорожного транспорта при дешифрировании аэроснимков

Год написания книги
2024
Теги
<< 1 ... 4 5 6 7 8 9 10 11 12 >>
На страницу:
8 из 12
Настройки чтения
Размер шрифта
Высота строк
Поля

Для сравнения и оценки качества съемочных систем в США успешно используется Национальная шкала дешифрируемости снимков (National Imagery Interpretability Scale, NIIRS), которая первоначально разрабатывалась для военных организаций, имеющих в своем штате опытных специалистов и использующих визуальные методы дешифрирования. Шкала NIIRS основана, прежде всего, на пространственном разрешении снимков, но в ней учитываются также факторы, связанные с отношением сигнал/шум и функцией рассеяния точки. Краткое описание 10-уровневой шкалы NIIRS, разработанной для панхроматических снимков, приведено в таблице 1.4. Более подробное описание содержится в работе Лихтенауэра (Leachtenauer и др., 1997) и в документации IRARS (1996). Была также разработана шкала NIIRS для оценки многоспектральных снимков (IRARS, 1995). Процедура оценки заключается в том, что снимок отдают опытному специалистудешифровщику (сертификат NIIRS) и просят его определить уровень деталей, которые он может распознать. Средний балл процедуры для панхроматических снимков, полученных системой IKONOS с разрешением 1 м по шкале NIIRS, составил 4,5.

Таблица 1.4 – Национальная шкала дешифрирования (NIIRS) Баллы Критерий.

На первый взгляд, шкала NIIRS не очень полезна для тех задач, которые решаются в области гражданского применения данных дистанционного зондирования. Однако при существующей тенденции к увеличению разрешающей способности многоспектральных датчиков до уровня таких систем, как IKONOS, QuickBird и Orb View, можно ожидать, что одни и те же данные будут использоваться как для военных, так и для гражданских целей. Кроме того, положенная в основу NIIRS идея о необходимости связывания характеристик съемочной системы и параметров решаемой задачи может оказаться очень полезной для количественного анализа ЦОЭС. В частности, предлагается математически связать параметры датчиков со шкалой NIIRS и оценивать возможность использования той или иной съемочной системы с помощью обобщенной формулы качества изображения (Leachtenauer и др., 1997).

На результаты субъективных экспертных оценок влияют характер рассматриваемых изображений и окружающая обстановка (условия эксперимента). Если наблюдатель видел подобные изображения, то он склонен более строго оценивать погрешности, поскольку имеет сложившееся представление о структуре изображения. С другой стороны, в незнакомом изображении искажения могут оставаться незамеченными, пока наблюдателю не будет на них указано. Условия эксперимента должны в максимально возможной степени соответствовать условиям наблюдения в реальной обстановке. Следует с осторожностью пользоваться экспертными оценками, если изменились условия наблюдения. Так, качество изображения на экране обычного телевизионного монитора может быть расценено как «хорошее», с «еле заметными» искажениями. Однако если то же самое изображение будет представлено в виде фотографии, снятой с помощью высококачественной аппаратуры, то все погрешности, ранее скрытые нелинейностями телевизионного устройства, неожиданно могут стать очень заметными.

2. Основы применения искусственного интеллекта при дешифрировании аэроснимков

2.1. Основные определения искусственного интеллекта

Искусственный интеллект как область знаний охватывает все области человеческой деятельности, включая информатику, математику, философию, психологию, термодинамику, лингвистику, здравоохранение, инженерию, экономику, когнитивные науки и др.

Эти знания используются в таких приложениях, как системы управления, системы принятия решений, многоагентные системы, системы обработки естественного языка, распознавание образов, распознавание речи, обработка знаний, интеллектуальный анализ данных, логистика и другие приложения.

Ниже раскрыты основные термины и определения, принятые в области искусственного интеллекта в соответствии с ГОСТ Р 59277–2020.

Искусственный интеллект – комплекс технологических решений, позволяющий имитировать когнитивные функции человека (включая самообучение, поиск решений без заранее заданного алгоритма и достижение инсайта) и получать при выполнении конкретных практически значимых задач обработки данных результаты, сопоставимые, как минимум, с результатами интеллектуальной деятельности человека. Комплекс технологических решений включает в себя информационнокоммуникационную инфраструктуру, программное обеспечение (в том числе, в котором используются методы машинного обучения), процессы и сервисы по обработке данных, анализу и синтезу решений.

Компьютерное зрение – способность функционального блока получать, обрабатывать и интерпретировать визуальные данные.

Нейротехнологии – технологии, которые используют или помогают понять работу мозга, мыслительные процессы, высшую нервную деятельность, в том числе технологии по усилению, улучшению работы мозга и психической деятельности.

Система искусственного интеллекта (СИИ) – техническая система, в которой используются технологии искусственного интеллекта.

Технологии искусственного интеллекта – комплекс технологических решений, направленных на создание систем искусственного интеллекта.

Автоматизированная система – система, состоящая из персонала и комплекса средств автоматизации его деятельности, реализующая информационную технологию выполнения установленных функций.

Автоматическая система – совокупность управляемого объекта и автономной СИИ, функционирующая самостоятельно, без участия человека.

Автономность – характеристика СИИ, связанная с ее способностью самостоятельно (без участия человека) выполнять возложенные на нее функции в течение заданного времени и с заданными показателями качества, надежности, безопасности. Системы, работающие в автономном режиме, подлежат обязательному контролю или надзору со стороны человека.

Агент – физический/программный объект, который оценивает собственное состояние, состояние других объектов и окружающей среды для выполнения своих действий, включая прогнозирование и планирование, которые максимизируют успешность, в том числе при неожиданном изменении оцениваемых состояний, достижения своих целей.

Алгоритм – конечное упорядоченное множество точно определенных правил для решения конкретной задачи.

Библиотека знаний – набор информационных (знаковых, символьных) моделей, которые выражают знания (также могут включать в себя определение моделей и их требования) о ряде вещей (понятий) и хранятся и воспроизводятся в электронном виде.

Вычислительные средства (средства вычислительной техники) – технические средства, непосредственно осуществляющие обработку данных.

Данные – предоставление информации в формальном виде, пригодном для передачи, интерпретации или обработки людьми или компьютерами.

Доверие к системе искусственного интеллекта – уверенность потребителя и, при необходимости, организаций, ответственных за регулирование вопросов создания и применения систем искусственного интеллекта, и иных заинтересованных сторон в том, что система способна выполнять возложенные на нее задачи с требуемым качеством.

Интероперабельность – способность двух или более информационных систем или компонентов к обмену информацией, в том числе на организационном, семантическом и техническом уровнях, и к использованию информации, полученной в результате обмена.

Интероперабельная система – система, в которой входящие в нее подсистемы работают по независимым алгоритмам, не имеют единой точки управления, все управление определяется единым набором стандартов – профилем интероперабельности.

Информационная технология – методы, способы, приемы и процессы обработки (сбора, накопления, ввода-вывода, приема-передачи, хранения, поиска, регистрации, преобразования, анализа и синтеза, предоставления, отображения, распространения и уничтожения) информации с применением программных и технических средств.

Киберфизическая система – информационно-технологическая концепция, подразумевающая интеграцию вычислительных ресурсов в физические процессы. В такой системе датчики, оборудование и информационные системы соединены на протяжении всей цепочки в логику управления для создания стоимости, выходящей за рамки одного предприятия или бизнеса. Эти системы взаимодействуют друг с другом с помощью стандартных интернет-протоколов для прогнозирования, самонастройки и адаптации к изменениям.

Многоагентная система – система, состоящая из множества взаимодействующих интеллектуальных агентов. Многоагентные системы могут решить проблемы, которые трудны или невозможны для отдельного агента или для единой (монолитной) системы.

Программное обеспечение (программа, программное средство) – упорядоченная последовательность инструкций (кодов) для вычислительного средства, находящаяся в памяти этого средства и представляющая собой описание алгоритма управления вычислительными средствами и действий с данными.

Распределенная система – распределенная система обеспечивает решение проблемы управления на базе распределенной системы знаний в отличие от многоагентных систем, где базы знаний отдельных агентов взаимодействуют.

2.2. Принципы классификации систем искусственного интеллекта

Классификация систем искусственного интеллекта отражает существенные (значимые) характеристики СИИ, включая особенности контура управления, в рамках которого используется СИИ, и технологии построения и использования знаний.

Представлена схема классификации, отражающая основные особенности СИИ для решения прикладных задач, помогающая определить направления их стандартизации (рисунок 2.1).

Схема классификации базируется на ключевых, с точки зрения стандартизации, основаниях классификации.

Каждое из рассматриваемых оснований представлено в виде нескольких классов верхнего уровня. В большинстве случаев более детальную иерархию классов или принципы классификации можно найти по ссылкам на соответствующие стандарты или документы.

Базовые классы СИИ целесообразно группировать на основе следующих принципов:

1) по классам и категориям объектов в управлении;

2) по технологиям построения, приобретения и использования знаний;

3) по функциям, которые выполняет СИИ в контуре управления;

4) по методам и технологиям, используемым в СИИ;

5) по методам и средствам взаимодействия СИИ с другими системами и человеком-оператором.

Эти подходы к классификации являются основными. Каждый из них может иметь иерархическую структуру.

Дополнительные классификации могут быть связаны со специальными требованиями к объектам, процессам, контуру управления, архитектуре, ресурсам с учетом окружающей среды (интероперабельность, нормы регулирования, безопасность, действия стандартов, этические требования, надежность, отказоустойчивость, условия внешней среды и т. д.).

Классификация, связанная с описанием каждого класса, представляет собой перечень объектов, соответствующих данному классу.

Классы, к которым могут быть отнесены СИИ, необязательно исключают друг друга. Для некоторых СИИ может быть применен только один из классов, а для других – несколько.

Каждая конкретная позиция классификации может быть детализирована, как по уже существующим стандартам, так и по сложившейся практике.

Рисунок 2.1 – Схема классификации СИИ

Рассмотрены следующие основания для классификации:

1) по степени автономности;

2) по степени автоматизации;
<< 1 ... 4 5 6 7 8 9 10 11 12 >>
На страницу:
8 из 12