Оценить:
 Рейтинг: 0

Атмосфера должна быть чистой. Применение статистических методов при аттестации источников эмиссии и оценке качества атмосферного воздуха

Год написания книги
2021
<< 1 2 3 4 5 6 >>
На страницу:
3 из 6
Настройки чтения
Размер шрифта
Высота строк
Поля

Если подобные формулы и дают представление о соотношениях между соответствующими величинами, то в силу локальных причин не позволяют оценить возможные экстремальные значения концентрации. Они не дают ни каких рекомендаций и алгоритмов при определении входящих в них величин, то есть по организации соответствующего контроля [8,9]. Единственная рекомендация, которая приводится в упомянутых работах, состоит в том, что любые данные нуждаются в коррекции и время отбора проб (время осреднения) всегда должно учитываться и приводиться вместе с данными о концентрациях.

Проблема осреднения по времени во многих случаях не учитывается при оценке санитарно-гигиенической обстановки из-за отсутствия соответствующих методических материалов. Эта проблема не учитывается при сравнении работы приборов и методик определения концентрации отдельных ингредиентов ЗВ в источниках выбросов и объектах окружающей среды. Известно, что одним из возможных путей решения проблемы осреднения является реализация методик статистической фильтрации и гармонического анализа экспериментальных данных, что может позволить получить оценки экстремальных значений концентрации, соответствующих необходимым временам осреднения, однако для этого необходима детальная информация о процессе Х(t), чтобы избежать маскировки частот.

Метод гармонического анализа временных рядов состоит в представлении случайной функции в виде конечной суммы ряда Фурье, при этом случайная функция заменяется детерминированной, а для достижения достаточной точности (учета 95% реальной дисперсии) достаточно рассчитать 4 -5 членов разложения [ 11, 16 ].

Наиболее существенные результаты применения дисперсионного анализа можно ожидать при интерпретации данных о распределении концентрации ЗВ на больших территориях, то есть оценка изменчивости концентрации ингредиента по району, на котором расположены несколько стационарных постов контроля [19]. Очевидно, что в общем случае концентрация каждого отдельного ингредиента ЗВ есть случайная функция X(x, t) точки пространства Х=(х

, х

, х

) и времени (t). Перечисленные выше вопросы относились в основном к временной структуре концентрации ЗВ в точке контроля, однако правомерно поставить вопрос и о пространственной структуре. Одним из возможных способов оценки санитарно гигиенической обстановки является метод построения системы неслучайных ортогональных функций ?

(х) таких , что отрезок ряда Фурье является наилучшей аппроксимацией случайной функции X(x, t) в смысле средней квадратичной погрешности, то есть система функций ?

(х) такова, что приближенное равенство при определенном выборе коэффициентов описывает изменчивость (дисперсию) поля X(x, t) лучше, чем линейная комбинация любых других функций, состоящая из такого же числа слагаемых.

(2.4)

Данные измерений в каждый конкретный момент времени представляют совокупность величин , соответствующих N пунктам измерений.

Функции являются собственными векторами корреляционной матрицы поля концентрации ЗВ.

, i, j = 1,2,3 ……N, то есть естественные функции удовлетворяют уравнению

Коэффициенты разложения находят из формулы:

где компоненты вектора .

Уже несколько первых членов разложения определяют 90 – 95% общей дисперсии и тем самым выражение 2.4. позволяет оценить изменчивость концентрации по всему району, то есть общую характеристику санитарно-гигиенической обстановки.

Примеры, приведенные выше, показывают, что проблемы связанные с выбором оптимальной дискретности [21], выбора контролируемых параметров, учетом времени осреднения, могут существенно снизить объективность оценки даже при наличии технических средств контроля.

Следует иметь в виду, что большинство приборов с постоянными коэффициентами запаздывания, уже в процессе измерения производят экспоненциальное сглаживание или осредняют реальный процесс по экспоненте. Таким образом, проблемы организации системы контроля можно было бы разделить на две основные части (подсистемы).

Первая состоит в разработке и оснащении пунктов контроля ЗВ техническими средствами, способными определить значение концентрации С [(г, мг, мкг)/м

] с определенным временем осреднения (?’), вторая часть (подсистема) состоит в разработке и внедрении математических моделей и алгоритмов (методик, программ), позволяющих интерпретировать полученные данные с точки зрения оценки санитарно-гигиенической обстановки. Эта подсистема обеспечивает не только информативность первой, но и непосредственно влияет на ее деятельность, то есть оптимизирует ее работу.

Собственно оценка вероятности превышения осредненной за соответствующий период времени (?’) концентрацией ингредиента нормируемых уровней за контрольный период (Т) и является оценкой санитарно-гигиенической обстановки. Правильная с методической и формальной точки зрения процедура сравнения характеристик загрязнения и контрольных уровней представляет собой определенную проблему и составляет одну из целей данной работы.

Анализ данных о выбросах и сбросах загрязняющих веществ промышленными предприятиями, а также многочисленные исследования временной структуры концентрации ЗВ в атмосферном воздухе [19, 20, 21, 22, 23] показали, что концентрации являются случайными функциями времени Х(t) (рис. 2). Значения величины Х(t) в каждый момент времени (t) не является однозначно определенным, как в случае детерминированных систем, а зависит от случайных факторов, которые влияли на систему до момента времени (t).

Случайный характер результатов наблюдений любого явления может быть обусловлен или физической природой этого явления или условиями его наблюдения и регистрации. Применительно к контролю эмиссий, а также качеству объектов окружающей среды имеют место оба этих фактора.

Во-первых, случайными являются некоторые компоненты ошибок измерений (отбор проб, их транспортировка, собственно анализ), во-вторых, случайным является характер турбулентности атмосферы и метеорологических элементов, что приводит к пульсации скорости, температуры, давления и в том числе концентрации скалярной примеси (концентрации ЗВ) в точке наблюдения [ 24 ] даже, если она консервативная и пассивная, в – третьих при генерации выбросов ЗВ (газов, паров, аэрозолей) или сбросов в различных технологических процессах и аппаратах, нельзя считать известными все факторы, регулирующие мгновенные значения концентрации конкретных ингредиентов. Аналогично, случайный характер имеют метеорологические процессы, регулирующие формирование полей концентрации (ЗВ) в атмосферном воздухе. Поэтому результаты измерения функции Х(t), представленные в дискретной форме следует рассматривать как реализацию {X

(t

)} некоторого случайного процесса ?(t).

Применение случайных моделей требует использования статистических методов оценки параметров случайных величин. Кроме того, существенным моментом является определение именно тех параметров случайных функций, описывающих изменения концентрации ЗВ, которые должны быть сопоставлены с контрольными или нормируемыми уровнями при оценке санитарно-гигиенической обстановки.

Следуя сказанному выше, формальное определение одного (разового) измерения концентрации можно представить в виде соотношения:

(2.5.)

Где – измеренное значение концентрации, осредненное за время ;

X(t) – случайная функция, описывающая временную изменчивость «мгновенных» значений концентрации ингредиента в точке измерений;

Q(t) – расходная характеристика зондирующего устройства.

Если контрольным периодом является промежуток Т= t

– t

, то средние значения за время Т можно определить двумя способами:

1) 

(2.6.)

2) 

(2.7.)

где – число циклов отбора проб ЗВ, (число измерений);

– продолжительность одного цикла измерения;

– промежуток времени между измерениями.

Не трудно показать, что разница между этими двумя определениями и возрастает с увеличением . Это происходит из-за потери информации о процессе X(t). Представления 2.6. и 2.7. чисто формальные, так как вид функции и не известен.

Если все {} рассматривать изолированно, как независимые случайные величины, имеющие одинаковые математические ожидания и дисперсии МХ и S

X, то, как известно, [ 5 ]

, (2.8.)

То есть, среднее арифметическое обладает выборочной неустойчивостью, а соответствующая дисперсия зависит от объема выборки n. Очевидно, что максимальное число измерений n=N за время (Т) может быть определено по формуле:

=0. (2.9.)

Следуя терминологии математической статистики число (N) можно назвать объемом генеральной совокупности [ 16 ].

Дисперсия среднего арифметического может зависеть от степени связности соответствующих экспериментальных значений {} [25,26]. Наличие связности между членами временных рядов видимо, впервые было рассмотрено Слуцким [ 25 ]. Им же показано, что устойчивость или связность в рядах затрудняет оценки статистических характеристик и требует оценок корреляционных функций. В настоящее время достаточно хорошо изучена связность метеорологических рядов [27,28], соответственно она должна учитываться в анализе данных о загрязнении воздуха [ 29,30 ]. Если концентрация ЗВ Х(t) в любой момент времени (t), определенная как (2.5.), является случайной величиной, то она однозначно определяется своей функцией распределения вероятности или частоты. Частота повторяемости появления тех или иных значений {} из (n) измерений может, например, быть рассчитана по формуле (2.1.).
<< 1 2 3 4 5 6 >>
На страницу:
3 из 6