Оценить:
 Рейтинг: 0

Боль в спине. За кулисами лечения и реабилитации. Часть III. Механизмы «неспецифической» боли

Жанр
Год написания книги
2023
<< 1 2 3 4 5 6 7 8 >>
На страницу:
5 из 8
Настройки чтения
Размер шрифта
Высота строк
Поля

Средний мотонейрон со средним количеством мышечных волокон. Имеет промежуточную степень возбудимости (средний порог активации). Иннервирует быстрые оксидативные волокна (тип II a).

Большой мотонейрон с большим количеством мышечных волокон. Имеет низкую возбудимость (высокий порог активации). Иннервирует быстрые гликолитические волокна (кислород независимые) (тип IIb).

Мышечные волокна отдельной моторной единицы всегда одного типа.

Мышца сокращается или расслабляется при взаимодействии двигательных и чувствительных нейронов.

Схематично все «участники» мышечного сокращения/расслабления

(Manuel, M., & Zytnicki, D. (2011). Alpha, beta and gamma motoneurons: functional diversity in the motor system’s final pathway. Journal of integrative neuroscience, 10 (03), 243—276).

Альфа (?) -мотонейроны иннервируют экстрафузальные волокна. Гамма (?) -мотонейроны – иннервируют интрафузальные. Бета (?) – одновременно иннервируют как экстра, – так и интрафузальные. Отвечают за слаженность сокращения обоих типов волокон, предотвращают потерю чувствительности «веретена» при сокращении экстрафузальных.

Схематично расположение «веретен» в мышце. В зависимости от специализации мышцы «веретена» могут иметь разное топографическое расположение среди мышечных волокон.

(Ellaway, P. H., Taylor, A., & Durbaba, R. (2015). Muscle spindle and fusimotor activity in locomotion. Journal of anatomy, 227 (2), 157—166).

В норме для развития максимальной силы мышцы должны активироваться все моторные единицы.

Функциональные свойства разных моторных единиц отражают особенности составляющих их мышечных волокон.

Совокупность мотонейронов, связанных с одной мышцей, называется пул мотонейронов. В нем представлены все три типа моторных единиц.

Синхронизация. При возбуждении одного альфа мотонейрона все иннервируемые им мышечные волокна одновременно сокращаются. Сила сокращения всех этих волокон будет суммироваться.

Последовательность активации моторных единиц называется рекрутинг.

Первыми активируются самые малые альфа-мотонейроны, связанные с медленными оксидативными волокнами.

Затем включаются быстрые оксидативные, чьи волокна крупнее. И наконец, активируются самые крупные мотонейроны, иннервирующие быстрые гликолитические волокна.

Сокращение медленных волокон может развивать до 15% максимальной силы мышцы.

Сокращение быстрых оксидативных может развивать до 45% максимальной силы.

Сокращение быстрых гликолитических волокон может обеспечивать максимальную силу сокращения.

Управлять силой мышечного сокращения можно только через усиление или ослабление частоты нервного импульса, вовлекая в работу новые моторные (двигательные) единицы, либо наоборот, выключая из работы задействованные МЕ.

Каждая последующая по уровню порога активации моторная единица имеет большее количество мышечных волокон. Причем разница по количеству мышечных волокон между соседними моторными единицами растёт с увеличением порога возбудимости (активации) и если низкопроговые моторные единицы могут разниться в несколько мышечных волокон, то высокопороговые моторные единицы разнятся между собой уже в десятки или сотни мышечных волокон. Соответственно, активация таких волокон уже будет иметь не «дискретный» (градуированный) характер, а «взрывной».

У нетренированных людей количество одновременно сокращенных волокон не превышает 17%. В результате физических тренировок у высококвалифицированных спортсменов количество одномоментно активированных волокон составляет порядка 40%.

Исходя из этого можно сделать вывод, что наиболее точные и координированные движения можно совершать при наименьшем мышечном напряжении, когда, рекрутируя новые моторные единицы, ЦНС регулирует силу мышцы десятками новых мышечных волокон, вовлеченных в работу, а не тысячами.

Нарушение механизма последовательной активации/деактивации мышечных волокон серьезно влияет на всю систему управления движением.

Количество мышечных волокон, принадлежащих одной и той же моторной единице, увеличивается с возрастом. Это обусловлено изменением коэффициента иннервации, поскольку некоторые двигательные нейроны вырождаются и умирают, что приводит к тому, что аксоны других моторных единиц образуют большие ответвления и реиннервируют мышечные волокна, утратившие аксональную связь (происходит разрастание аксонов с захватом «чужих» мышечных волокон). Таким образом, с возрастом количество моторных единиц уменьшается, тогда как размер (количество мышечных волокон) тех моторных единиц, которые остаются, – увеличивается.

При постуральной (позной) деятельности в работу вовлекаются преимущественно низкопороговые медленные энергоэкономичные устойчивые к утомлению моторные единицы, а мышечные волокна, входящие в состав таких единиц, функционируют в режиме, близком к изометрическому и развивают при этом длительные тетанические сокращения небольшой силы, т.е. находятся в режиме постоянного сокращения.

В мышцах, для функции которых необходимы кратковременные сильные сокращения, больше быстрых волокон (фазные мышцы).

Рекрутинг – механизм последовательного включения сократительного аппарата мышцы, напрямую зависящий от выполнения поставленной на текущий период двигательной задачи (выдать необходимую силу, мощность, скорость, выносливость и т. д. то есть, выполнить необходимую работу с заданными параметрами). На основе механизма рекрутинга строится механизм межмышечной и внутримышечной координации. Другими словами, для сложных двигательных актов ЦНС должна координировать не просто схему включения/выключения отдельных мышц и мышечных групп, но и последовательность включения/выключения отдельных групп волокон внутри самой мышцы. Т.е., точно координировать и регулировать работу всех мышечных пулов в каждой отдельно взятой мышце. И главное в данном процессе является выключение мышечных волокон и возможность мышцы расслабиться и быть растянутой до первоначальной или заданной программой длинны. Из физиологии мышечного сокращения известно, что утомление не только снижает сократительную способность мышцы (соответственно вызывая потерю в силе), но и способность вовремя расслабляться, что увеличивает погрешности при управлении движением.

Чем выше процентное соотношение медленно сокращающихся тонических волокон, тем выше способность мышцы к накоплению и отдаче эластической энергии [рекуперация]. Соответственно тем выше экономичность самого движения.

КПД мышц достигает 35%, что является хорошим показателем производительности по сравнению с другими типами «двигателей», но даже при таком условии расход метаболической энергии на выполнение мышечного сокращения очень высок. И требуется значительное количество времени на пополнение энергетического запаса и накопления резервов.

Любое движение может быть представлено как перемещение из одной равновесной точки, в которой мышечная активность минимальна, в другую.

С точки зрения биомеханики поддержание равновесия и одновременное управление движениями являются достаточно сложными задачами, поскольку тело человека представляет собой многозвенную биомеханическую систему, в которой наиболее массивное звено (корпус) расположено высоко над площадью опоры, размеры которой ограничены площадью опорной базы.

Между звеньями существует сложное динамическое взаимодействие. Движение в любом отдельно взятом звене приводит к необходимости вырабатывать корректирующие силовые моменты (мышечное напряжение) во всех суставах кинематической цепи.

Для реализации любой двигательной задачи в рычажно-маятниковом механизме ЦНС нужно преодолеть проблему степеней свободы – в каждом определенном отрезке времени и траектории движения сегмента обеспечить его стабильность или мобильность относительно другого подвижного или неподвижного сегмента или опоры. Фактор длительности и силы напряжения мышц играют основную роль.

Ключевой функцией ЦНС является контроль избыточного движения, избыточного напряжения, стремление к минимизации степеней свободы или ограничение числа занятых независимых элементов движения.

Другими словами: ЦНС должна вовремя замыкать и размыкать суставы и контролировать скорость и углы сгибания-разгибания. При этом общий центр масс (ОЦМ) должен постоянно находиться под контролем ЦНС с целью препятствования падению.

Каждая мышца имеет свою индивидуальную структуру и специализацию. Но, несмотря на это, любое движение выполняется группами мышц посредством ансамблевого взаимодействия как внутри групп мышц со сходным действием, так и согласованно с группами антагонистов – мышц с противоположным вектором действия. Антагонизм довольно условен. При выполнении движения антагонисты выполняют контролирующую, тормозящую или стабилизирующую функцию по отношению к агонистам – мышцам, выполняющим основное движение.

Для выполнения различных задач ЦНС группирует мышцы в динамические мышечные цепи. Такие временные «союзы» направлены для решения конкретной задачи и не являются неизменными анатомическими образованиями. Такое групповое взаимодействие может требоваться для динамической стабилизации туловища (конечностей) или выполнения задач, требующих сложной координации. Одни и те же мышцы могут входить в состав различных мышечных цепей. Участие отдельных мышечных цепей различно даже при выполнении отдельных фаз движения. Чаще всего проблемы возникают при движениях со сложной структурой, когда одна и та же мышечная группа или отдельная мышца работает как агонист – выполняет основное движение, и стабилизирует сустав (одновременно являясь неотъемлемой частью системы стабилизации). Пример – поясничная мышца при сгибании позвоночника передними волокнами сгибает корпус, а задними контролирует углы сгибания позвонков относительно друг друга – стабилизирует поясничный отдел позвоночника – препятствует сгибанию корпуса.

Контроль за фазами перехода концентрического сокращения в эксцентрическое и обратно требует повышенного внимания со стороны ЦНС и точного контроля над отдельными мышечными параметрами – скоростью, силой сокращения, временем расслабления. Такая работа ЦНС обозначается как внутримышечная и межмышечная координация. Для предотвращения перегрузки и истощения отдельных мышц и для оптимизации выполнения и повышения точности движения ЦНС использует синергии – содружественную работу мышц, повышающую их производительность с одновременным снижением рабочего износа и повышением общего коэффициента полезного действия мышечной группы.

При любом движении мышца может работать как агонист, антагонист, синергист. Смена фаз зависит от выполняемого движения. Причем фазы могут сменяться мгновенно.

ЦНС применяет синергии для обеспечения гибкости и вариабельности выполнения двигательной задачи. Также такой механизм позволяет предотвратить или снизить истощение метаболических резервов в каждой отдельно взятой мышце.

Наряду с управлением синергиями, ЦНС использует и другой механизм мышечной работы – коактивацию – одновременное напряжение агонистов-антагонистов – мышц с противоположным действием. Используется для динамической стабилизации суставов.

В норме одновременное напряжение мышц (коактивация) не превышает 2—3 (два-три) процента от максимального мышечного сокращения. Правомерно будет сказать, что благодаря конструкции скелета и свойствам мышечно-фасциальной системы передвижение осуществляется почти в холостом режиме благодаря упруго-эластическим свойствам мышц и возможности работать в режиме рекуперации энергии.

При маятниковом механизме, активация мышечного сокращения выполняет корригирующую функцию по возвращению ОЦМ в площадь опоры или используется при средних и интенсивных нагрузках непродолжительный период. Все остальное время мышечная система работает в фоновом тоническом режиме с кратковременными пиками повышения активности различных мышечных групп.

Причины мышечной боли

Разбор начну с боли, вызванной спазмом мышц, поскольку данный механизм заявлен как основной и этот «концепт» прочно вбит в головы терапевтам, семейным врачам, массажистам и мануальщикам. В последнее время в литературе для неврологов навязывается такой же примитивный взгляд на боли в спине, как и у терапевтов. Если и дальше так пойдет, то по уровню знаний отличить невролога от семейного врача будет невозможно. Привожу конкретный пример:

Практическая неврология: руководство для врачей под редакцией профессора А. С. Кадыкова (Серия «Библиотека врача-специалиста), 2011. Предназначено для врачей-неврологов, врачей общей практики, терапевтов, фельдшеров, студентов медицинских вузов, а также для всех специалистов, оказывающих помощь больным с заболеванием нервной системы.

Глава 11. Боли в спине. Авторы: Л. С. Манвелов, В. В. Шведков, А. С. Кадыков):

«Первоначально основной причиной возникновения болей в спине считали воспалениенервных корешков и стволов. В дальнейшем инфекционно-аллергическая теория патогенеза болей в спине постепенно стала уступать место вертеброгенной, чему в определенной степени способствовал успех операций по поводу грыжи диска. Одно время все боли в спине стали объяснять дегенеративно-дистрофическими изменениями позвоночника, сдавлением грыжей межпозвонкового диска нервного корешка. В этот период появляется и соответствующая терминология: дискогенный корешковый компрессионный синдром, вертеброгенная радикулопатия, вертеброгенный рефлекторный синдром.

В 1980—1990—е гг. у неврологов стала превалировать теория преимущественно мышечного происхождения болей в спине. В настоящее время считается, что почти 90% случаев причиной болей в спине являются миофасциальные синдромы, [выделено мной] а на долю вертеброгенных нарушений приходится не более 10%. Это отражает и соответствующая терминология (дорсалгия, люмбалгия, миофасциальный синдром).
<< 1 2 3 4 5 6 7 8 >>
На страницу:
5 из 8