Оценить:
 Рейтинг: 0

Системная технология

Год написания книги
2010
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 20 >>
На страницу:
11 из 20
Настройки чтения
Размер шрифта
Высота строк
Поля

* Системная технология использует принцип «черного ящика», который утверждает, что для предсказания поведения системы (или ее подсистемы) не обязательно точно знать, как ее процесс и структура построены из элементарных процессов и структур [12]. Так, для моделирования физиологии клеток не обязательно исчерпывающим образом понимать ее биохимию, для описания динамики популяций животных не нужно фундаментальных знаний по физиологии, для моделирования поведения социальных систем не обязательны глубокие знания по психиатрии, для моделирования технических систем автоматического регулирования уровня жидкости не обязательны знания в области сопротивления материалов и т.д. Этот принцип широко применяется при моделировании больших систем на основе анализа характеристик входных и выходных потоков ресурсов, преобразуемых системой.

* Системная технология уделяет большое внимание «неформальным» графическим и вербальным моделям. Вербальными моделями являются изложенные в главах 1, 2 принцип системности, Законы системности и технологизации, концепция и принципы системной технологии, описания особенностей построения технологических процессов, структур, систем. Графические модели позволяют наглядно изобразить в виде схем, графиков, других простых и сложных графических конструкций частные и общие качественные и количественные характеристики моделей систем. Неформальные модели являются, как правило, этапом, предшествующим построению формальных математических моделей системы.

С помощью неформальных моделей системной технологии мы находим некоторую совокупность упрощений, абстракций и соотношений, к которым можно сводить все многообразие моделей технологий, прежде чем перейти к построению технологий для различных сфер деятельности человека.

* Системная технология использует машинные модели двух видов: аналоговые и дискретные. Аналоговые модели – это, как правило, модели систем в виде обыкновенных дифференциальных уравнений и уравнений в частных производных, решаемые на аналоговых вычислительных машинах. Дискретные модели, т.е. модели с развитой системой логических переходов и условий, описываемой с помощью аппарата дискретной математики (теория алгоритмов, математическая логика, теория множеств, алгебраические системы и др.), решаются с помощью цифровых вычислительных машин. Существуют также модели систем, ориентированные на решение с помощью аналогово-цифровых комплексов. В болыпинстве случаев модели систем являются непрерывно-дискретными.

* Для решения задач системной технологии эффективными являются имитирующие модели. Для этих моделей не ставится задача наибольшего соответствия структуры модели структуре моделируемой системы. Основная задача – наиболее достоверное воспроизведение реакции моделируемой системы на внешние, в том числе и на входные воздействия в виде изменений характеристик преобразуемого системой ресурса и воздействий внешней среды. Подбор совокупности операторов преобразования входной информации в выходную производится с помощью статистических математических методов. Модель системы структурируется в виде блоков в соответствии с достоверными представлениями о структуре системы. Каждый блок модели имитирует поведение определенной системы, являющейся подсистемой исследуемой системы. Имитирующие модели позволяют корректировать набор операторов преобразования в соответствии с текущим поведением моделируемой системы, создавать имитационные и деловые игры для принятия решений по проектированию, управлению, развитию, использованию систем, для образовательных целей.

* Формальные математические модели, используемые системной технологией, в том числе и используемые для имитирующих моделей, могут быть дифференциальными (в форме дифференциальных уравнений), логическими (в форме уравнений математической логики), теоретико-множественными, алгебраическими (в форме алгебраических уравнений и систем), графовыми (в форме ориентированных и неориентированных графов), комбинаторными (в виде моделей размещения объектов в соответствии со специальными правилами), смешанными. Модели систем могут быть стохастическими и детерминированными, т.е. учитывающими (в первом случае) и не учитывающими (в другом случае) случайный характер изменений характеристик системы и преобразуемых ею ресурсов.

* Системная технология оценивает осуществляемую системой деятельность на основе системы критериев, определяющих, насколько оказалось эффективным достижение цели, поставленной перед триадой «объект, субъект, результат», с помощью системы-результата, т.е. изделия. Эти критерии выдвигает внешняя среда или система-субъект деятельности.

Модель системы также можно оценивать некоторой совокупностью критериев, которую выдвигает система-субъект деятельности, моделирующая систему-объект деятельности с целью управления, проектирования, исследования, принятия решений по развитию или с иной целью. Такими критериями могут быть [36] реалистичность (степень соответствия реальной системе), достоверность (степень точности предсказания поведения системы), общность (диапазон приложимости модели для описания систем разной природы), устойчивость (способность сохранять соответствие моделируемой системе при изменении воздействий внешней среды системы и внутренней среды элементов системы в диапазонах, соответствующих экстремальным условиям реальной жизнедеятельности системы), чувствительность (степень зависимости параметров модели от вариаций других параметров и от воздействий внешней среды).

* Системная технология решает задачи построения модели системы в зависимости от того, что является «изготовителем» изделия системы: процесс системы или структура системы.

В технологических системах изделие, продукт – это результат осуществления системного процесса целенаправленного преобразования ресурсов (материальных, информационных и др.), в экономических системах изделие системы – это определенный комплекс экономических показателей, являющийся результатом системных экономических процессов. Во многих других системах, являющихся основным объектом приложения системной технологии, изделие системы также является результатом системного процесса. Это, образно говоря, «системы-процессы».

Напротив, в таких системах, как здания, мосты, конструкции аппаратов, машин, цель системы реализуется с помощью структуры, а процессы теплового и механического взаимодействия (между элементами зданий, например) являются сопутствующими и не необходимыми для реализации основного назначения этих систем в соответствии с замыслом их создания. В этих системах (можно назвать их «системы-структуры») изделием системы может являться: внешний облик (архитектурные комплексы), потребляемый внешней эстетической средой; надежность транспортного соединения двух участков дороги, подходящей с двух сторон к берегам реки (мост), потребителем которой является транспортные средства и пешеходы.

Надо заметить, что системы-структуры – это, как правило, элементы и подсистемы больших и сложных стохастических систем. Так, архитектурное сооружение – часть системы «человек – архитектурный ансамбль»; процесс этой системы – это процесс удовлетворения эстетических потребностей человека; этот процесс «проходит по-разному» для каждого сочетания «новый человек – архитектурное сооружение»; формальной модели этого процесса не существует, как правило. Другой пример – «мост-транспорт (в т.ч. и пешеход)»; процесс этой системы может быть описан только статистическими методами; его конкретная реализация – это взаимодействие детерминированной структуры со случайным набором остальных элементов системы; другими словами, это системы со случайным набором элементов, поведение которых также носит вероятностный характер, Таких систем много – ракета «земля-воздух», транспортные сооружения и т.п. В реальности все системы имеют вероятностные компоненты процессов и/или структур. Вопрос только в том, можно ли обойтись без учета этого или нет, для того, чтобы построить модель системы с приемлемой для практики точностью.

Для построения стохастических моделей систем используют специальные методы моделирования процессов и структур, основанные на аппарате теории вероятностей, математической статистики, теории размытых множеств. Здесь стохастические модели не рассматриваются, хотя предложенные модели системной технологии могут развиваться и в этом направлении. Таким образом, модели системы могут создаваться для моделирования системы в целом, либо процесса системы, либо структуры системы в зависимости от того, что обеспечивает достижение целей системы.

* Системная технология предлагает моделирование жизненного цикла системы. Рассмотрим модель жизненного цикла на примере искусственной системы, т.е. системы, создаваемой человеком.

Любая искусственная система по определению создается человеком; в соответствии со сформулированным в гл.1 принципом системности такая система является системой-результатом (изделием, продуктом) в некоторой системной триаде «объект-субъект-результат». Жизненный цикл системы с позиций системной технологии содержит концептуальную, физическую и постфизическую стадии.

Концептуальная стадия содержит следующие фазы: формирование, исследование, выделение и описание новых потребностей во внешней среде будущей триады «объект-субъект-результат» (напр., во всем или в части общественного производства); формулирование и количественное описание цели (одной из целей), возникающей во внешней среде в соответствии с некоторой новой потребностью; комплексное или частное (напр., экономическое, социальное или экологическое) исследование и обоснование системы, как изделия, необходимого для достижения цели (комплекса целей, связанных с удовлетворением новых потребностей общественного производства), эскиз системы (анализ вариантов построения, выбор и проработка требований к будущей системе в виде задания на создание и реализацию проекта системы), проект системы (разработка всех деталей конкретного варианта воплощения системы, построение макетов и опытных образцов, окончательный вариант обоснования системы и бизнес-плана ее реализации).

Действия по реализации системы на ее концептуальной стадии производятся вначале элементами внешней среды, а затем в системе-субъекте будущей триады систем «объект-субъект-результат». На этой стадии модель будущей системы проходит этапы осознания необходимости создания системы (прообраз будущих характеристик системы), формального описания идеи ее построения (прообраз будущего процесса и структуры системы), плана и задания на ее создание, эскизно-технического и рабочего проекта системы. Одновременно могут создаваться компьютерные и натурные модели вариантов системы или ее частей для принятия решения по уточнению модели системы. В системе-субъекте могут быть исследовательские, аналитические, экспертные, проектные, конструкторские, архитектурные, производственные подразделения, общая задача которых – построение концептуальной модели системы в виде проекта, которая, будучи реализована физически, обеспечит, с высокой степенью вероятности, более лучшее (в смысле конкретных критериев) достижение определенной цели во внешней среде по сравнению с другими альтернативами.

Физическая стадия содержит следующие фазы: опытно-экспериментальная (изготовление моделей системы в виде опытных образцов, макетов, компьютерных программ, опытно-промышленных изделий пробной или установочной серии при запуске системы в производство; создание производственной системы-объекта для изготовления описываемой системы); производственная (изготовление системы в серийном или единичном производстве и поставка ее заказчику); эксплуатация системы в соответствии с ее назначением во внешней среде до окончания срока морального или физического износа. На этой стадии система-субъект видоизменяется, ее функции расширяются и дополняются новыми: управление производством и маркетинг системы-результата; конструкторское и технологическое обеспечение производства; сервисное сопровождение процесса эксплуатации системы; учет ошибок и внесение изменений в системе производства; актуализация информации о системе, имеющейся у пользователя; предоставление услуг по улучшению системы (или способов ее эксплуатации).

Постфизическая стадия содержит следующие фазы: вывод системы из обращения, изъятие из процесса эксплуатации в связи с моральным или физическим износом; консервация и хранение или ликвидация системы; сохранение модели системы на бумажных и/или компьютерных носителях; использование хранимой модели системы для создания более совершенных систем аналогичного или сходного назначения. На этой стадии функции системы-субъекта вновь видоизменяются и сужаются до функций архива информации и склада образцов, макетов системы-результата. Сама система-результат на этой стадии вновь превращается в свою модель – концептуальную систему, которую могут неоднократно использовать при создании новых моделей – концептуальных систем.

Мы рассмотрели модель жизненного цикла системы-результата на всем протяжении от появления предпосылок к ее созданию во внешней среде до ее физической «гибели» и продолжения жизненного цикла на постфизической стадии в форме концептуальной системы. И система-субъект деятельности и система-объект деятельности также являются системой-результатом для некоторых метасистем и макросистем общественного производства; к ним полностью применима предложенная модель жизненного цикла системы.

Предложенная вербальная модель жизненного цикла системы может быть формализована с помощью графовой модели процесса достижения цели, предложенной в разделе 1.4. Эта задача в дальнейшем будет рассмотрена.

* Известно [18], что системы можно моделировать с использованием функционального, морфологического и информационного подходов.

Функциональный подход используется для описания процесса системы. Модель процесса системы представляется в виде совокупности функций, преобразующих поступающие ресурсы в конечный результат функционирования системы, используемый во внешней среде. Конечный результат и входные ресурсы представляются в виде функций времени. В каждый данный момент времени состояние системы описывается совокупностью множеств значений входных и выходных воздействий. Функциональная модель предсказывает изменения состояния системы во времени.

Морфологический подход предназначен для моделирования структуры системы, ее подсистем. При этом выделяют элементы системы и транспортно-складские связи между ними, предназначенные для обеспечения взаимодействий: информационные, энергетические, материальные и др.

Информационный подход позволяет создать модель преобразования информационного ресурса, как для любого элемента и для подсистемы, так и для преобразования, проводимого системой в целом. Информационный подход позволяет создать информационную модель системы, дающую интегральное описание системы, независимо от ее природы и природы преобразуемых ресурсов.

* Важной фазой концептуальной стадии жизненного цикла системы является проект системы, с помощью которого система переходит от идеи к физической реализации. При проектировании систем различают: макропроектирование (внешнее проектирование), в процессе которого разрабатывается макропроект и микропроектирование (внутреннее проектирование), в процессе которого разрабатывается микропроект [19]. С позиций системной технологии на стадии макропроектирования создаются макропроект и метапроект.Макропроект можно рассматривать, как совокупность моделей внешней среды, триады систем, ее процесса и структуры в целом, описывающую роль триады систем для внешней среды и роль внешней среды для триады систем. Метапроект можно рассматривать, как совокупность моделей триады систем, а также моделей каждой из систем триады, описывающую роль каждой системы для триады систем и роль триады систем для каждой системы. Микропроект, создаваемый на стадии микропроектирования, можно рассматривать, как совокупность моделей системы, а также ее элементов, элементарных процессов, транспортно-складских взаимодействий между ними, описывающую роль элементов, элементарных процессов и взаимодействий для системы, а также роль системы для них.

* Системную технологию можно реализовать только при наличии процесса и структуры системы.

Процесс необходим системе, как некоторая совокупность элементарных целесообразных преобразований ресурсов – элементарных процессов изготовления изделия системы. Все эти преобразования можно рассматривать, как функции времени. Тогда процесс – это то, с помощью чего система (замысел, модель, проект системы) реализуетсяво времени.

Структура необходима системе, как некоторая совокупность элементов (машин, аппаратов, оборудования), внутри которых локализовано протекание элементарных процессов системы. Все эти части системы имеют «привязку» к определенному месту в пространстве (вода, воздух, земля, космическое пространство). Тогда структура – это то, с помощью чего система (замысел, модель, проект системы) реализуетсяв пространстве.

* На всем протяжении жизненного цикла системы ее развитие и взаимоотношения с внешней средой – предмет деятельности системы-субъекта. К модели системы-субъекта, которая существенно видоизменяется в течение жизненного цикла системы, системная технология предъявляет определенные требования.

На начальных фазах концептуальной стадии система-субъект выполняет исследовательские и аналитические функции, связанные с анализом потребностей внешней среды в создании данной системы, и может представлять собой исследовательский коллектив, аналитическую группу. На последующих фазах концептуальной стадии, если принято решение о создании данной системы, система-субъект выполняет работы по разработке проекта системы, ее модель дополняется проектным коллективом и группой по управлению проектом; управление проектом на этой стадии заключается в согласовании проекта с представителями внешней среды по вопросам экологии, санитарно-эпидемиологического надзора и др., а также в составлении планов реализации проекта (планов производства работ по реализации проекта при необходимости строительства, планов конструкторской и технологической подготовки производства при необходимости изготовления системы в промышленном производстве и т.д.).

На стадии физической реализации проекта системы задачи системы-субъекта связаны с освоением промышленного производства системы и осуществлением строительства; здесь исследовательские и проектные функции системы-субъекта связаны только с необходимостью корректировки проекта по ходу строительства и освоения промышленного производства; здесь нарастают функции управления системой, которые сочетают в себе функции управления проектом системы, как концептуальной моделью системы, с функциями управления производством самой системы, как физической системы (здания, сооружения, машины, аппарата, прибора, оборудования, компакт-диска, видеофильма и т.п.): менеджмент и маркетинг, управление технологическими процессами, учет и анализ и др.; здесь же нарастают функции управления развитием системы, т.е. исследовательские функции системы-субъекта, связанные с подготовкой проекта новой системы, которая сменит рассматриваемую при ее моральном устаревании и выводе из обращения.

На постфизической стадии функции системы-субъекта по отношению к рассматриваемой системе сводятся к сохранению информации о ней на бумажных и компьютерных носителях и в форме образцов; система-субъект на данной стадии представляет собой архив или музей или банк данных.

Можно сказать, что модель системы-субъекта содержит такие подсистемы, как «аналитик», «исследователь», «проектировщик», «эксперт», «лицензиар», «управление производством», «управление развитием», «контролер», «архивариус», которые переживают разные стадии своих жизненных циклов в соответствии с задачами, которые выполняет система-субъект.

* Проект — это наиболее полная модель системы, пригодная для физического осуществления идеи создания и развития системы, и проектировщик — существенная часть модели системы-субъекта, которая заслуживает отдельного рассмотрения.

Системная технология может рассматриваться, как методология проектирования и управления проектами систем. Системная технология устанавливает взаимосвязи между данной системой и всеми системами, с которыми она взаимодействует; технологические системы вообще могут существовать только наличии управления проектом системы; управление проектом может быть эффективно только при качественном анализе, показывающем степень заинтересованности внешней среды в осуществлении проекта и в его развитии.

* Модель внешней среды — важный компонент, оказывающий существенное влияние на формирование модели системы. С позиций системной технологии внешняя среда включает все системы, которые не контролируются системой-субъектом данной системной триады и всеми ее подсистемами (исследователь, проектировщик, управление производством, развитием и архивом).

3.2. Классификация систем

В настоящем разделе разработана классификация систем, принятая в теоретической и прикладной системной технологии.

* Концептуальные и физические системы.По признаку принадлежности к стадиям жизненного цикла можно различать концептуальные и физические системы. На концептуальной и постфизической стадиях система существует в концептуальной форме, на физической стадии – в физической форме.

Концептуальные системы — это модели систем в виде замыслов, идей, концепций, схем и методов построения систем, математических и иных моделей систем, программ и планов системной деятельности, проектов систем, опытных образцов, макетов, полезных моделей, промышленных образцов, других объектов промышленной собственности, объектов авторского права и смежных прав; концептуальные системы могут использоваться для производства новой информации и знаний в сферах науки, проектирования, культуры, образования, управления и для построения физических систем. Концептуальными системами не являются, по определению, системы наук. Здесь применение термина «система» закономерно в том отношении, что оно отражает порядок, план, строгость построения научной теории, здания науки в целом. Можно утверждать, что этот термин употребляется в отношении научных теорий в более широком смысле, чем в системологии и пока еще не поддается формальному определению в этом смысле. В системологии, экологии, системной технологии, других науках, объектом деятельности которых являются системы, независимо от их физической природы и изученности другими науками, используется довольно большое количество определений системы, но все они имеют более узкий смысл, нежели понятие системы в общеупотребительном широком смысле. Удовлетворять определению концептуальной системы может часть науки, научной теории, посвященная построению некоторого класса систем и, в результате, содержащая в себе общую модель этого класса систем, пригодную для построения исследовательского проекта и физической реализации конкретной системы или для создания новой информации и знания. Концептуальные системы тиражируются, распространяются и хранятся с помощью физических носителей информации: бумага, компьютерные носители, опытные образцы, демонстрационные макеты, архивные модели, видеопленка, аудиокассеты, а также с помощью физических процессов говорения и слушания, радио – и телепередач и т.д. Физические носители также могут представлять собой системы или подсистемы систем, но, как правило, это системы, построенные в соответствии с другими концептуальными моделями, чем та концептуальная система, для которой они используются, как носители.

Физические системы — это физическая реализация концептуальной системы в виде совокупности компонент ресурсов (материальных, человеческих, энергетических, природных, информационных, финансовых, коммуникационных, недвижимости, машин, оборудования). К физическим системам относятся технологические системы материального производства, экономико-административные системы управления производством, системы связи, системы организации образования и научных исследований, компьютерные системы и сети и другие системы, результат деятельности которых – материальные, энергетические, информационные продукты, знания и умения человека, потребляемые сферами общественного производства и потребления и природной средой. Физическую систему сопровождает, как правило, информационная модель системы, как разновидность физической реализации концептуальной системы, например, на компьютере в виде программной системы.

* Природные и искусственные системы.По признаку происхождения следует различать природные и искусственные системы.

Природные системы созданы природой: водные системы (пресноводные и морские), атмосферные, горные системы, солнечная система. В классе природных систем особое место занимают экологические системы. Мы здесь не рассматриваем вопрос, являются ли действия природы целенаправленными или целесообразными; мы имеем в виду лишь состоявшийся факт наличия системы, к появлению которой человек не имеет отношения; следовательно, считаем мы, эта система создана природой. Природа, в нашем понимании, созидатель систем, который, во-первых, не человек, во-вторых, действует не по тем правилам, которые может объяснить для себя человек, и, в-третьих, эти правила приводят к лучшим результатам в смысле построения систем.

Искусственные системы созданы человеком: производственная система, система исследования космоса, робототехнические системы, системы сферы здравоохранения, системы обороны, обучающие системы, информационные системы, энергетические системы, коммуникационные системы, государственные системы, политические партии. Внешняя среда создает определенные мотивации, в силу которых поведение человека становится целенаправленным и, как правило, эти цели более успешно достигаются, если человек для этого создает системы.

* Социальные системы, системы «человек-машина» и машинные системы.По признаку участия человека в качестве части (элемента, подсистемы) искусственной системы можно различать системы социальные, системы «человек-машина» и системы машинные.

Социальные системы состоят только из людей и причинно-следственных отношений между ними; процессы достижения целей и деятельность социальных систем лежат в области принятия решений; эти решения в большинстве случаев относятся к вопросам развития социальных систем и их элементов и совершенствования причинно-следственных отношений между элементами социальных систем. Примерами таких систем могут служить органы управления промышленными фирмами, правительственные ведомства, политические партии, общественные объединения. Наиболее важное значение для таких систем имеют организационная структура (причинно-следственные отношения между людьми) и поведение людей, как элементов системы.

Системы «человек-машина» состоят из людей и из компонентов других видов ресурсов (автомобиль, трактор, участок земли, здания, сооружения, компьютер, технологическое оборудование). В большинстве своем системы «человек-машина» являются подсистемами больших и сложных производственных систем в различных сферах деятельности человека.

Машинные системы состоят только из машин (компьютеров, контроллеров, регуляторов, технологического оборудования, аппаратов). Это гидроэнергетические системы, системы автоматического регулирования и управления, крылатые ракеты, метеорологические спутники земли, роботы-манипуляторы, транспортные системы. Среди машинных систем выделяются системы, способные самонастраиваться и адаптироваться к изменениям условий внешней среды (самонастраивающиеся системы, адаптивные системы, инвариантные системы).

* Открытые и закрытые системы.По признаку наличия взаимодействий с внешней средой системы и с внутренней средой элементов системы можно выделить закрытые и открытые системы.
<< 1 ... 7 8 9 10 11 12 13 14 15 ... 20 >>
На страницу:
11 из 20