Лечение сахарного диабета стволовыми клетками. Серия: Доказательная медицина
Юрий Захаров
В январе 2019 года в научном журнале «Nature» опубликовано научное исследование доказывающее, что «излечение диабета 1 типа возможно», при этом указаны механизмы, описанные автором этой книги в течение последних десяти лет. В новой серии Захарова Ю. А., (MD, PhD, professor) в 4-х томах описаны способы перевода пациента в состояние «управляемого медового месяца», когда на фоне стойкой компенсации возможна отмена инсулинотерапии и сохранение ремиссии на момент написания книги свыше 8 лет.
Лечение сахарного диабета стволовыми клетками
Серия: Доказательная медицина
Юрий Захаров
Корректор Юрий Кудряшов
Дизайнер обложки Мария Ведищева
© Юрий Захаров, 2019
© Мария Ведищева, дизайн обложки, 2019
ISBN 978-5-4496-4498-5
Создано в интеллектуальной издательской системе Ridero
Прежде всего необходимо понимать, что клеточная терапия с помощью различных клеточных препаратов – это не панацея, не чудо, а самая обычная медицинская технология, имеющая свои показания и ограничения. В терапии сахарного диабета 1-го типа она решает сразу две задачи:
– предупреждение аутоиммунной реакции за счет репрограммирования клеток иммунной системы, что останавливает разрушительное действие иммунитета на ?-клетки;
– увеличение (восстановление) общего количества дееспособных ?-клеток.
Это подтверждает исследование: в то время как регенеративный потенциал стволовых клеток может быть использован для обеспечения глюкозочувствительных инсулин-продуцирующих клеток, их иммуномодулирующие свойства могут потенциально использоваться для предотвращения, остановки или отмены аутоиммунной реакции:
https://www.ncbi.nlm.nih.gov/pubmed/23572052?fbclid=IwAR1D2qpwTv6CqMfS9vZOLVY0R-xqP9fCwp0wv9N7lO0nQvBvmnoicYYTwcM (https://www.ncbi.nlm.nih.gov/pubmed/23572052?fbclid=IwAR1D2qpwTv6CqMfS9vZOLVY0R-xqP9fCwp0wv9N7lO0nQvBvmnoicYYTwcM)
А вот теперь самое главное: аналогичные результаты удается получить с помощью традиционных методов, но в значительно более длительной перспективе, хотя многочисленные публикации в отношении клеточной терапии показывают, что полный ответ организма на терапию составляет окно от 90 дней до 36 месяцев и обусловлен как индивидуальными особенностями организма, так и циклом деления стволовых клеток.
Между тем на обложке июльского выпуска журнала Stem Cells от июля 2017 года The Medical Medicine демонстрирует последнее достижение в функциональном излечении инсулинозависимого диабета. Ученые из Symbio Cell Tech (SCT), небольшой биотехнологической компании в Солт-Лейк-Сити, разработали технологию, которая объединяет мезенхимальные стволовые клетки (MSC) с культивируемыми островковыми клетками поджелудочной железы с образованием трехмерных клеточных кластеров, называемых неоостровками. Однократная доза неоостровков, вводимая в брюшную полость, обеспечивает контроль сахара в крови, освобождая от зависимости к экзогенному инсулину:
https://stemcellsjournals.onlinelibrary.wiley.com/doi/
epdf/10.1002/sctm.17—0005fbclid=IwAR3fZx
CYlmviydAtGEp1bY5SdfFPAk-6LKnBW0glDZvl
PaNkjGbkQEfPzJw
Еще один вид клеточной терапии эффективен для лечения сахарного диабета 1-го типа ввиду высокой регенерационной способности и иммуномодулирующих свойств стволовых клеток для остановки аутоиммунной реакции в отношении ?-клеток, сохранения остаточной массы ?-клеток, облегчения эндогенной регенерации:
https://www.ncbi.nlm.nih.gov/pubmed/28618324?
fbclid=IwAR0NO1GpJv3nj0J4BO-kEaQ3c-
uBy42Vnji2rv3M44pxY4CukuJCzYgVfQ8
Человеческий организм состоит более чем из 200 различных типов клеток. Все они имеют какую-то определенную специализацию: нервные, мышечные клетки, эпителий и эндотелий, жировые, хрящевые, костные клетки и т. д. Определенные клетки организма меняются очень быстро, например клетки кожи. Довольно быстро обновляется кровь.
Есть типы клеток, число которых остается практически неизменным во взрослом организме, например клетки сердца – кардиомиоциты. До недавнего времени считалось, что нервные клетки не восстанавливаются. Однако стремительное развитие биологической науки опровергает старые догмы. Выдающиеся открытия последнего времени произошли в биологии и медицине в связи с развитием клеточных технологий. Возможность выделения клеток из организма и искусственного их выращивания лежит в основе множества новых научных технологий.
В последние годы внимание ученых привлекли особые клетки организма, наш «запасной материал» – стволовые клетки. Открытие стволовых клеток и механизма их действия стало революцией в практической и регенерационной медицине. Оно признано одним из наиболее выдающихся открытий прошлого века наряду с расшифровкой строения ДНК и генома человека. Стволовые клетки – основной строительный материал организма и, более того, некая «элита», способная организовывать работу других клеток, влиять на них. Именно они принимают непосредственное участие в процессах регенерации. Ежедневно в человеческом организме происходит обновление примерно миллиарда клеток. На смену поврежденным или устаревшим клеткам приходят новые, берущие свое начало от стволовых. Стволовые клетки в организме – в различных тканях и органах – располагаются в строго определенных местах, называемых нишами. Ниши стволовых клеток расположены практически во всех органах и тканях. В коже, например, это дермальный слой.
Есть два различных типа стволовых клеток. Первый – это эмбриональные стволовые клетки, из которых состоит эмбрион. Стволовые клетки другого типа называются взрослыми или соматическими. Соматические клетки также способны к дифференциации, однако более ограниченной, чем эмбриональные. Соматические клетки одного типа способны давать начало другим типам клеток. Эта способность называется пластичностью. Это свойство делает возможным применение соматических стволовых клеток для терапии и репарации больных и поврежденных тканей.
Однако использование соматических стволовых клеток ограничивается тем, что они труднее поддаются дифференциации и культивируются в лабораторных условиях хуже, чем эмбриональные. Количество и качество стволовых клеток в них с возрастом снижается. Именно этот факт лежит в основе современной концепции старения.
Стволовые клетки можно искусственно нарастить в культуре in vitro, то есть вне организма, выделяя их из различных источников (костный мозг, жир, кожа, мышечная ткань, волосяные фолликулы). Культивируемые клетки характеризуются постоянством кариотипа (хромосомного набора) и экспрессии генов в течение длительного времени (до 300 дней). Они устойчивы к инфекции, в них сложнее вызвать мутации.
До недавнего времени было трудно добиться устойчивой продукции инсулина у репрограммированных стволовых клеток в ?-клетки. Несмотря на успехи в дифференцировке инсулин-продуцирующих клеток из эмбриональных стволовых клеток человека, генерация зрелых функциональных ?-клеток in vitro остается труднодостижимой. Для достижения этой цели разработали условия культивирования клеток, чтобы точно имитировать события, происходящие во время органогенеза островков поджелудочной железы и созревания ?-клеток. Ученые сфокусировались на рекапитализации кластеров эндокринных клеток путем выделения и повторной агрегации незрелых ?-подобных клеток с образованием обогащенных островков ?-кластеров (eBCs). EBCs показывают физиологические свойства, аналогичные первичным ?-клеткам человека, включая устойчивую динамическую секрецию инсулина, повышенную передачу сигналов кальция в ответ на секрецию и улучшенную митохондриальную функцию. Кластеризация эндокринных клеток вызывает метаболическое созревание, стимулируя митохондриальное окислительное дыхание – процесс, центральный для связывания стимул-секреций в зрелых ?-клетках. EBCs показывают стимулированную глюкозой секрецию инсулина уже через три дня после трансплантации у мышей. Таким образом, репликационные аспекты кластеризации эндокринных клеток позволяют генерировать полученные из стволовых клеток ?-клетки, которые напоминают их эндогенные аналоги:
https://www.nature.com/articles/s41556?018?0271?4?
fbclid=IwAR3K_E9ds4brUbvkoaVKNhoiYNVJZVhpjy9
Wy226s26x0XuUssTefmkJCM0
Основная характеристика стволовых клеток – отсутствие специализации. В нативном виде они буквально «никакие». При этом в определенных условиях они способны «превращаться» в клетки различных типов – нервные, мышечные, эпителиальные, хрящевые и другие, то есть дифференцироваться.
Кроме того, стволовые клетки характеризуются очень высокой пролиферативной активностью или способностью делиться. Основная функция этих клеток – регенерация. Любые воспалительные реакции в организме, любой сбой в работе различных систем вызывает активацию этих клеток. Они служат основным источником запасного материала организма, участвуя в репарации любых типов повреждений. Универсальные и уникальные одновременно, эти клетки являются кирпичиками здоровья, долголетия и молодости.
Но не всегда просто направить дифференцировку стволовых клеток по пути ?-клеток, на это уходит иногда много времени – клетки начинают работать, но через дни и даже месяцы. Стратегия дифференциации сфокусирована на модулировании передачи сигналов трансформирующего фактора роста ? (TGF-?):
https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(18)30531-9 (https://www.cell.com/stem-cell-reports/fulltext/S2213-6711(18)30531-9)
Что же такое стволовые клетки и какие именно качества делают их особыми? Стволовые клетки определяются тремя основными характеристиками: во-первых, это не специализированные клетки (в отличие от клеток, из которых состоят мышцы, мозг и т. д.); во-вторых, стволовые клетки способны делиться в течение долгого времени, причем в результате каждого деления образуются две идентичных клетки; третье важное свойство стволовых клеток – то, что они способны к дифференциации в специфические типы клеток, такие как клетки мышц, мозга, крови.
Стволовые клетки можно найти в любой животной ткани, а поскольку эмбрионы состоят из стволовых клеток, которые при делении и дифференциации превращаются в специализированные клетки и ткани, все мы в конечном счете состоим из стволовых клеток. Клетки однодневного эмбриона способны дифференцироваться в любой из около 350 типов клеток, образующих человеческое тело. При получении сигнала извне стволовые клетки способны к дифференциации в различные типы клеток и тканей. Интересно, что этот сигнал может быть не только биологического происхождения (некое химическое соединение), но и физического (ГГц- и ТГц-диапазон волн). Об этом подробнее см. том «Радиогенетика».
А в 2019 году ученые установили, что стволовость клеток можно индуцировать специальными белками. Если ученые к клеткам добавляли пчелиный белок, то клетки оставались стволовыми безо всяких дополнительных ухищрений. Ройялактин стимулировал активность генов, которые поддерживали клетки во «всемогущем» недифференцированном состоянии – они продолжали делиться, сохраняя возможность превратиться во что угодно, в какой угодно тип клеток.
У позвоночных ройялактина нет, но есть похожий белок NHLRC3, который активен во время эмбрионального развития. В экспериментах он действовал на мышиные эмбриональные клетки точно так же, как ройялактин (любопытно, что NHLRC3 (который переименовали в белок Regina, то есть «королева») по аминокислотной последовательности не похож на пчелиный белок – но зато он похож по форме, по трехмерной структуре):
https://www.nature.com/articles/s41467?018?06256?
4fbclid=IwAR3I10XQIR5oiEbtFoTpXZDupIyNNZM3Rv
HS2Yfu9jNZIFbZZdGtcPpgos4
Еще более любопытны работы, показывающие (что, между прочим, используется в программах лечения сахарного диабета у взрослых), что стволовость может сохранятся и обновляться при применении циклического голодания. Стволовые клетки могут очень долго делиться, при этом часть их остается, как и прежде, стволовыми, а часть превращается в какие-то специализированные клетки, выполняющие те или иные функции. Но со временем стволовые клетки утрачивают способность делиться без конца – как и весь остальной организм, они тоже стареют, и их запас постепенно уменьшается, что не может не отразиться на состоянии органов, которые уже не могут обновляться.
Исследователи из Массачусетского технологического института пишут в Stem Cells, что стволовые клетки можно омолодить, если дать им поголодать:
https://www.cell.com/cell?stem?cell/fulltext/S1934?