Оценить:
 Рейтинг: 0

Каталитический риформинг бензинов. Теория и практика

Год написания книги
2019
Теги
<< 1 ... 9 10 11 12 13 14 15 16 17 ... 25 >>
На страницу:
13 из 25
Настройки чтения
Размер шрифта
Высота строк
Поля

.

Результаты расчета равновесных составов для двух температур – 800 К и 700 К, являющихся границами рабочих температур платформинга, – представлены в табл. 3.

Таблица 3

Состав равновесных смесей для двух температур

Компонент

700 К

800 К

н-гексан

2МП

3МП

2,2ДМБ

2,3ДМБ

0,2371

0,3351

0,1809

0,1533

0,0936

0,2692

0,3369

0,1869

0,1215

0,0855

П р и м е ч а н и е : данные в таблице указаны в мольных долях.

Как следует из полученных данных, введение в реакционную схему дополнительных компонентов снижает мольную долю н-гексана при сохранении прочих параметров, что демонстрирует очень сильную зависимость равновесного состава от реакционной схемы. Этот эффект имеет место даже при включении в реакционную схему компонента, образование которого в отдельности термодинамически неблагоприятно, так как и для такого рода реакций K

 > 0, что увеличивает знаменатель в формуле расчета для мольной доли сырьевого компонента.

Интересно отметить, что с увеличением молекулярной массы парафинового углеводорода количество возможных изомеров возрастает, и в связи с этим должно происходить уменьшение равновесной концентрации нормального углеводорода, то есть термодинамическая глубина конверсии парафинов должна увеличиваться с ростом молекулярной массы.

Формально это вытекает из формулы для определения мольной доли компонента, но имеется и более глубокий физический смысл, который состоит в том, что возрастание числа компонентов означает увеличение количества перестановок в химической системе, то есть рост энтропии химической системы в больцмановской интерпретации энтропии. Так, при изомеризации н-гептана (9 компонентов реакционной смеси) равновесное содержание н-гептана при 700 К составляет 0,19 вместо 0,24, полученного для н-гексана (5 компонентов).

Увеличение температуры изомеризации приводит к снижению констант равновесия и равновесной степени превращения в изомеры.

При повышении температуры происходит изменение соотношения между моно-, ди- и триметилзамещенными изомерами с сокращением доли более разветвленных изомеров.

Ниже, на рис. 11, представлено изменение состава реакционной смеси в зависимости от температуры для гептанов.

Рис. 11. Состав смеси для реакции изомеризации

для нормального гептана [50]

В целом вклад реакций изомеризации в увеличение октановых чисел катализата платформинга ограничен из-за высоких температур процесса и является второстепенным фактором, в отличие от промышленных процессов изомеризации н-пентана и гексанов, проводимых при существенно более низких температурах.

Глава 6. Кинетика реакций платформинга

Уравнение Аррениуса.

Быстрые и медленные реакции.

Почему происходит увеличение скорости реакции циклизации при переходе от н-гексана к н-гептану.

Кинетический и термодинамический контроль реакций риформинга.

Структурно-чувствительные и структурно-нечувствительные реакции

Термодинамика устанавливает принципиальные ограничения на направление и максимальную глубину химического превращения. Равновесная степень химического превращения является предельно возможной величиной, которая может быть получена при условии достижения химического равновесия при данных давлении и температуре.

Реально достижимая степень превращения может быть ниже, если достижение химического равновесия невозможно из-за существования кинетических барьеров в виде высоких энергий активации реакции.

Зависимость константы скорости реакции от температуры описывается уравнением Аррениуса, где экспоненциальный множитель представляет собой долю молекул, обладающих кинетической энергией не менее Е

при данной температуре Т:

где K

– предэкспоненциальный множитель; Е

– энергия активации; R – универсальная газовая постоянная; Т – температура, К.

Значения энергии активации для ряда реакций платформинга, кДж/моль, представлены ниже:

– изомеризация парафиновых и нафтеновых углеводородов – 105,

– дегидрирование парафиновых и нафтеновых углеводородов – 84,

– дегидроциклизация парафинов – 145,
<< 1 ... 9 10 11 12 13 14 15 16 17 ... 25 >>
На страницу:
13 из 25