. Причем если речь идет о малом значении ?, т. е. о малой вязкости ?
, то вид устойчивого стационарного решения закона (35) должен быть близок к уравнению окружности [2]:
Y
+ Y
? ?.
2.3.4. Таким образом, в фазовом пространстве двух переменных генератору Ван дер Поля соответствует устойчивая замкнутая траектория (аттрактор) – предельный цикл.
Сравнивая между собой эволюционные диаграммы, представленные на рис. 2 и 4, приходим к выводу об общих закономерностях возникновения устойчивых состояний описанных экономической и физической систем.
Рис. 4
2.4. Бифуркация в модели эволюции простейшей биологической системы
Различные системы по разным причинам попадают в неустойчивое состояние. Однако, попав в него, они подчиняются общим закономерностям, отражающим суть неустойчивого состояния. При этом бифуркационные закономерности занимают среди названных не последнее место (о бифуркациях см. Приложение, раздел П5).
Биологические системы – это открытые и неравновесные системы. Достигнуть равновесия им постоянно мешает какое-нибудь внешнее воздействие. В математическом отношении внешнее воздействие учитывается с помощью управляющего параметра в эволюционном уравнении. Если изменяются внешние условия, то изменяется и величина управляющего параметра. Последнее же, как мы видели, приводит к смене типов устойчивости. В результате при определенном значении этого параметра система может оказаться неустойчивой и, следовательно, подверженной бифуркации.
Чаще всего бифуркация – это единственный выход для системы из неустойчивого состояния. Другим выходом, разумеется, является обратный ход по значениям управляющего параметра, однако для этого придется изменять внешние условия (также в обратную сторону), что по силам далеко не каждой системе. Кроме того, бифуркация дает новые состояния и поэтому лежит в основе прогрессивного развития природы. В частности, многие (если не все) биологические виды своим появлением обязаны именно бифуркационным процессам в природе. Задача, рассмотренная в настоящем разделе, в какой-то мере поможет понять некоторые детали этого явления.
Итак, имеется система, состоящая из микроорганизмов размножающихся путем деления. Эта система находится в среде с начальной массой пищи m
. Требуется исследовать бифуркационное поведение данной системы, т. е. построить бифуркационную диаграмму и определить точки бифуркации.
Если масса пищи m не регулируется извне, то закон ее убывания с ростом числа микроорганизмов близок к экспоненциальному (см., например, [11]):
m = m
exp(—?n),
где n = N/V – концентрация микроорганизмов; N – число микроорганизмов; V – объем среды; ? – коэффициент потребления, показывающий, как быстро с ростом n уменьшается пища.
Скорость размножения dn/dt пропорциональна концентрации уже имеющихся микроорганизмов и массе пищи, следовательно [11],
(40)
где µ = ?m
, ? – коэффициент пропорциональности, характеризующий благоприятные условия среды обитания (благоприятные потому, что, как видно из (40), чем больше ?, тем больше dn/dt – прирост числа микроорганизмов).
Учтем смертность микроорганизмов. Для этого воспользуемся следующими соображениями: с одной стороны, с ростом числа умерших скорость появления новых микроорганизмов падает, а с другой стороны, число умерших микроорганизмов пропорционально числу имеющихся. Поэтому в (40) из правой части нужно вычесть величину, пропорциональную n:
(41)
где ? – коэффициент, показывающий, какую долю от общего числа микроорганизмов составляют умершие. Другими словами, коэффициент ? отражает факторы, способствующие увеличению смертности, т. е. этот коэффициент характеризует неблагоприятные условия среды обитания.
Вы ознакомились с фрагментом книги.
Приобретайте полный текст книги у нашего партнера: