Оценить:
 Рейтинг: 0

Чудеса арифметики от Пьера Симона де Ферма

Год написания книги
2021
<< 1 2 3 4 5 6 7 8 9 ... 19 >>
На страницу:
5 из 19
Настройки чтения
Размер шрифта
Высота строк
Поля

Если бы Сингх самостоятельно готовил эту книгу, то у него возникло бы столько вопросов, что он и за 20 лет бы не справился. Конечно же, ему всеми силами помогали те самые герои профессора, прославляемые в фильме BBC, потому-то книга удалась на славу и действительно читать её очень интересно даже тем, кто знает о математике только понаслышке. Первое, что сразу бросается в глаза, так это то, что в книге допущена арифметическая ошибка (!), причём не где-нибудь, а в самом её названии! Ведь хорошо известно, что «лучшие умы» ничего не могли знать о ВТФ до 1670 г., когда её формулировка впервые появилась в книге, изданной сыном Ферма Клеманом Самюэлем, «Арифметика Диофанта с комментариями К. Баше и замечаниями П. Ферма»[8 - Если бы эта книга была опубликована при жизни Ферма, то его просто порвали бы на куски, т.к. в своих 48 замечаниях он не дал доказательства ни одной из своих теорем. Но в 1670 г. т.е. через 5 лет после его смерти расправляться было не с кем и маститым математикам пришлось самим искать решения предложенных им задач. С этим как-то уж совсем не задалось и, конечно, многие из них не могли простить Ферма такой дерзости. Не забылось и то, что ещё при жизни он дважды устраивал вызовы английским математикам, с которыми те явно не справились, несмотря на его великодушное признание их достойными соперниками в письмах, полученных ими от Ферма. Только через 68 лет после первой публикации «Арифметики» Диофанта с замечаниями Ферма ситуация, наконец-то, сдвинулось с мёртвой точки, когда величайший гений науки Леонард Эйлер доказал частный случай ВТФ для n=4, применив метод спуска в точном соответствии с рекомендациями Ферма (см. Приложение II). Позже, благодаря Эйлеру, получили решения и другие задачи, а вот ВТФ так никому и не покорилась.] (см. Приложение V рис. 88). Но тогда должно быть не 358, а 325 лет, и выходит, что Сингх просто не заметил ошибку?

Однако не спешите с выводами! Эта ошибка не автора книги и вовсе не случайна. Те же самые профессора наперебой рассказывали Сингху о том, что якобы ещё в 1637 г.[9 - В пункте 2-30 письма Ферма к Мерсенну ставится задача:«Найти два квадрато-квадрата, сумма которых равна квадрато-квадрату, или два куба, сумма которых есть куб» [26]. Датировка этого письма в издании Таннери вызывает сомнения, т.к. оно было написано после писем с более поздней датировкой. Поэтому вероятнее всего оно было написано в 1638 г. Отсюда делается вывод, что ВТФ появилась в 1637 году??? Но разве у ВТФ такая формулировка? Даже если эти две задачи есть частные случаи ВТФ, то как же можно приписывать Ферма то, о чём в то время он вряд ли мог даже догадываться? Кроме того, на неразрешимость задачи о разложении куба на сумму двух кубов впервые указал арабский математик Абу Мухаммед аль Худжанди ещё в X столетии [26]. А вот неразрешимость такой же задачи с биквадратами является следствием решения задачи из пункта 2-10 того же письма: «Найти прямоугольный треугольник в числах, площадь которого равнялась бы квадрату». Способ доказательства Ферма даёт в своем 45-м замечании к «Арифметике» Диофанта, которое начинается так: «Если бы площадь треугольника была квадратом, то были бы даны два квадрато-квадрата, разность которых была бы квадратом». Таким образом, в то время постановка этой задачи и подход к её решению сильно отличались даже от частного случая ВТФ.] Ферма и сам обнаружил ошибку в своём доказательстве, но просто забыл вычеркнуть эту теорему в записях на полях книги. Кто придумал эту небылицу неизвестно, но многие учёные воспринимали её как известный факт и повторяли раз за разом в своих работах. Понять их можно, ведь иначе получалось, что Ферма оказался умнее их всех! Когда Эндрю Вайлс заявил (https://www.pbs.org/wgbh/nova/article/andrew-wiles-fermat/ (https://www.pbs.org/wgbh/nova/article/andrew-wiles-fermat/)): «Я не верю, что у Ферма было доказательство», то это мнение было вовсе и не ново, т.к. об этом много раз твердили многие очень авторитетные учёные. Однако это же явно противоречит логике. Получается, что Ферма каким-то невероятным образом умудрился сформулировать совсем не очевидную теорему, не имея на то вообще никаких оснований[10 - Чтобы сомнений не возникало, были предприняты попытки как-то «обосновать» то, что у Ферма не могло быть доказательства, упоминаемого в оригинальном тексте ВТФ. См. например,https://cs.uwaterloo.ca/~alopez-o/math-faq/node26.html (Did Fermat prove this theorem?).Подобная «аргументация» никому из здравомыслящих людей, имеющих отношение к науке, и в голову не придёт, т.к. это даже в принципе не может быть убедительно. Ведь таким способом можно приписать Ферма любую галиматью. Но инициаторы подобных вбросов явно не учли, что это и есть свидетельство организованной и срежиссированной информационной кампании со стороны тех, кто был заинтересован в продвижении «доказательства» Вайлса.].

Другое противоречие в книге Сингха – это явное несоответствие между документальными фактами и оценками консультантов личности Ферма как учёного. Нужно отдать должное Сингху в том, что он добросовестно, (хотя и не полно), изложил ту часть творчества Ферма, которая относится к его вкладу в науку и подтверждается документами. Особенно следует отметить то, что арифметика названа здесь «самой фундаментальной из всех математических дисциплин». Одного только перечисления достижений Ферма в науке вполне достаточно, чтобы не сомневаться, что учёных такого уровня за всю историю науки было считанные единицы.

Но если это так, то зачем же нужно было додумывать то, что никакими фактами не подтверждается и лишь искажает реальную картину? Уж очень это похоже на стремление убедить всех в том, что Ферма не мог доказать ВТФ, поскольку это якобы подтверждается историками. Но историки получали сведения от тех самых математиков, которые не справились с задачами Ферма и могли таким вот образом выражать своё недовольство. Вот так и появляются всякие взятые ниоткуда рассуждения о том, что Ферма был учёным-любителем, арифметика привлекала его лишь головоломками, которые он «придумывал», ВТФ он тоже «придумал», глядя на уравнение Пифагора, а свои доказательства он не желал публиковать из-за опасений критики коллег.

Вот нате вам, получите! Вместо величайшего учёного и основоположника теории чисел, а также комбинаторики, (вместе с Лейбницем), аналитической геометрии, (вместе с Декартом), теории вероятностей, (вместе с Б. Паскалем), теории волновой оптики, (вместе с Гюйгенсом), дифференциального исчисления, (вместе с Лейбницем и Ньютоном), к наследию которого обращались в течение веков величайшие деятели науки, теперь вдруг появился «любитель» головоломок, который всего-то лишь получал удовольствие от того, что никто не может их решить. А раз арифметика – это головоломки, то вот эта самая фундаментальная из всех наук низводится до уровня составления кроссвордов. Такая «логика» явно шита белыми нитками, и чтобы в этом убедиться, достаточно просто указать на некоторые общеизвестные факты.

История не сохранила ни одного свидетельства того, что в период жизни и деятельности П. Ферма кто-нибудь решил хотя бы одну из его задач[11 - Видимо, исключением является один из величайших английских математиков Джон Валлис (John Wallis), который после «первого вызова» и ознакомления с задачами Ферма ответил, что они слишком просты и пришлось ему объяснять, что арифметические задачи нужно решать в целых числах. Ситуация изменилась только после «второго вызова» со следующей задачей: «Пусть дано любое неквадратное число, требуется найти бесконечное число квадратов, которые при умножении на данное число и увеличении на единицу составят квадрат». Предлагалось найти решения для чисел 109, 149, и 433 [26]. На этот раз Валлис нашёл решение, применив метод Евклида разложения иррационального числа в бесконечную простую дробь, и даже опубликовал его под названием «Commercium epistolicam». И хотя Валлис и не дал полное доказательства правомерности этого метода, Ферма всё же признал, что с задачей он справился. К решению почти вплотную приблизился Эйлер, когда он показал, что эта дробь цикличная, однако и ему не удалось довести доказательство до конца, и эту задачу в конечном итоге всё-таки решил Лагранж.Позже уже своим способом эту задачу Ферма решил также Гаусс, но для этого была задействована созданная им обширная теория под названием «Арифметика вычетов». И всё было бы хорошо, если бы доказательство Лагранжа не относилось к категории высшей трудности, а решение Гаусса не опиралось на сложнейшую теорию. Ведь сам Ферма явно не мог следовать ни тем, ни другим путем. О том, как он сам решил эту задачу, он сообщает в письме к Каркави в августе 1659 г. [26]: «Я признаю, что г-н Френикль дал различные частные решения этого вопроса, а также г-н Валлис, но общее решение будет найдено с помощью метода спуска, примененного умело и надлежащим образом». Однако это решение Ферма так и осталось для всех тайной за семью печатями!]. Это и стало основанием для оппонентов ещё в те времена сочинять о нём всяческие байки. В сохранившихся письмах, он сообщал, что уже три раза посылал доказательства своим респондентам. Но ни одно из них, естественно, до нас не дошло, т.к. получатели писем Ферма, конечно же, не желали выглядеть для потомков так, будто не справились с простенькими задачками.

Другой неоспоримый факт – это то, что личный экземпляр Ферма книги «Арифметика» Диофанта 1621 г. издания с его рукописными замечаниями на полях никто из очевидцев никогда не видел!!! Ну просто прелюбопытнейшая получается картина. Критики Ферма на полном серьезе клюют на остроумную гасконскую шутку, что достопочтенный сенатор, (видимо, из-за нехватки у него бумаги!), записывает на полях книги гусиным пером точный и выверенный текст из тридцати шести латинских слов, но абсолютно не допускают того, что у него, (у величайшего учёного!), и в самом деле было «поистине удивительное доказательство» его собственной теоремы[12 - Очевидно, что если бы речь шла только о формулировке ВТФ, то было бы очень неразумно записывать её на полях книги. Но сетования Ферма на узкие поля повторяются и в других замечаниях, например, в 45-м, в конце которого он добавляет: «Полное доказательство и пространные объяснения не могут поместиться на полях из-за их узости» [26]. А ведь это замечание занимает целую печатную страницу! Конечно, он ничуть и не сомневался, что его гасконский юмор будет оценён по достоинству. Когда его сын Клеман Самюэль, который, естественно, обнаружил несоответствие пометок на полях подготовленным к публикации замечаниям, то совсем этим не был удивлён, поскольку для него было очевидно, что сразу по ходу чтения книги дать точные формулировки задач и теорем совершенно невозможно. То, что этот экземпляр «Арифметики» Диофанта с рукописными пометками Ферма не дошёл до нас наводит на мысль, что уже тогда он был исключительно ценным раритетом, поэтому мог быть куплен другим владельцем за очень высокую цену и тот, конечно, хотя бы ради собственной безопасности не был настолько глуп, чтобы трубить об этом на весь мир.].

Даже трудно себе представить, как были бы изумлены эти критики, узнав, что в действительности Ферма вообще никогда и не занимался поисками этого доказательства, т.к. в то время не мог знать, что именно нужно доказывать. Но как раз в последней фразе формулировки ВТФ, которая их так возмущала, есть ключевое слово, которое прямо указывает на то, каким образом он эту задачу решил. Получилось так, что учёный мир столетиями понапрасну изводил себя в поисках доказательства ВТФ, а сам Ферма никогда его не искал, а просто заявил, что он его открыл![13 - Текст последней фразы ВТФ: «Я открыл тому поистине удивительное доказательство, но эти поля слишком узки, чтобы вместить его здесь», ? явно не относится к сути содержания теоремы, однако для многих математиков он выглядит настолько вызывающе, что они всячески стремились показать, что это просто пустое бахвальство. При этом они не заметили ни юмора насчет полей, ни ключевого слова «открыл», которое здесь явно не подходит. Более подходящими словами здесь могли быть, скажем, «получил» или «нашёл». Если бы оппоненты Ферма обратили на это внимание, то им стало бы ясно, что слово «открыл» указывает на то, что доказательство он получил неожиданно, решая задачу Диофанта, к которой и было написано замечание, получившее название ВТФ. Таким образом, математики столетиями безуспешно искали доказательство ВТФ, вместо того, чтобы искать решение задачи Диофанта о разложении квадрата на сумму двух квадратов. Им-то казалось, что задача Диофанта явно не стоит их внимания. А вот для Ферма она стала едва ли не самой трудной из всех, которыми он занимался, и когда он все-таки с ней справился, то в награду и получил открытие ВТФ.]

Можно также напомнить оппонентам, твердящим о намеренном отказе Ферма публиковать свои работы, что, например, Декарт получил разрешение на публикации от самого его высокопреосвященства кардинала Ришелье. Для Ферма это было невозможно и об этом есть даже письменное (!!!) свидетельство, (см. текст на надгробной плите П. Ферма: «Vir ostentationis expers… ? Он был лишен возможности публикаций…» См. Приложение V рис. 85-86). Тем не менее, даже находясь в таких условиях, он всё-таки подготовил к изданию «Арифметику» Диофанта, с добавлением своих 48-ми замечаний, одно из которых и получило название «Великая Теорема Ферма».

Издание должно было появиться в честь исторически значимого события – основания Французской академии наук, в подготовке которого участвовал и сам Ферма, переписываясь со своим давним коллегой из парламента Тулузы Пьером де Каркави (Pierre de Carcavy), ставшего королевским библиотекарем. Королевский указ о создании Французской академии наук готовил Каркави, а вносил его на подписание Людовику XIV всемогущий министр финансов Жан-Батист Кольбер (Jean-Baptiste Colbert). Однако академия наук была создана лишь в 1666 г., т.е. только через год после смерти Ферма.

Математики очень славятся тем, какие они строгие педанты, формалисты и буквоеды, но, как только речь заходит о ВТФ, все эти качества сразу куда-то исчезают. Оппоненты Ферма, игнорируя общеизвестные факты, называли его то отшельником, (это сенатора-то из Тулузы!), то князем любителей, (это одного-то из основателей Французской академии наук!), и это несмотря на его вклад в науку, сопоставимый по своей значимости лишь с парой или тройкой самых выдающихся ученых за всю историю науки!

Рисунок 16

Леонард Эйлер

Не преминули они также ехидно указать на то, что о Ферма никто бы так и не узнал, если бы его задачами не заинтересовался величайший математик всех времен и народов Леонард Эйлер (Leonhard Euler). Но как раз это магическое имя и сыграло с ними злую шутку. Их безграничная вера в новаторские изыскания Эйлера была слишком слепой, чтобы заметить, что именно благодаря ему, наука получила такой мощный удар, от которого она не может оправиться до сих пор!

Математики не просто поверили Эйлеру, но и горячо поддержали его в том, что алгебра – это самая главная математическая наука, а вот арифметика является лишь одним из её элементарных разделов[14 - Любопытно, что русскоязычное издание фундаментального труда Эйлера вышло в 1768 г. под названием «Универсальная арифметика», хотя оригинальное название «Vollst?ndige Anleitung zur Algebra» должно переводиться как «Полное руководство по алгебре». Видимо, переводчики, (студенты Петр Иноходцев и Иван Юдин), резонно полагали, что уравнения исследуются здесь главным образом с точки зрения их решений в целых или рациональных числах, т.е. методами арифметики. Для сегодняшнего читателя это 2-х томное издание представляется как китайская грамота, поскольку вместе с сильно устаревшим русским языком и орфографией здесь просто неимоверное количество опечаток. Вряд ли сегодняшняя РАН как наследница «Императорской академии наук», издавшей этот труд, понимает его истинную ценность, иначе он давно был бы переиздан в современном и общедоступном виде.]. Задумка Эйлера была действительно превосходной, поскольку его алгебра, получившая новые возможности за счёт использования «комплексных чисел», должна была стать мощнейшим научным прорывом, который позволил бы не только расширить диапазон чисел от числовой оси до числовой плоскости, но и большую часть всех вычислений сводить к решению алгебраических уравнений[15 - Здесь есть аналогия между алгеброй и аналитической геометрией Декарта и Ферма, которая выглядит более универсальной по сравнению с геометрией Евклида. Тем не менее, арифметика и геометрия Евклида являются фундаментами, на которых только и могут появиться алгебра и аналитическая геометрия. В этом смысле идея Эйлера рассматривать все вычисления сквозь призму алгебры заведомо ущербна. Но его логика была совсем иной. Он понимал, что если наука будет развиваться только путём увеличения разновидностей уравнений, которые она способна решать, то рано или поздно она зайдет в тупик. И в этом смысле его исследования представляли для науки огромную ценность. Другое дело, что их алгебраическая форма была воспринята как магистральный путь развития и это привело в дальнейшем к разрушительным последствиям.].

Необходимость «комплексных чисел» математики объясняют очень даже просто. Чтобы решать абсолютно любые алгебраические уравнения нужно, (всего-то лишь!), сделать так, чтобы уравнение x

+ 1 = 0 стало разрешимым[16 - Здесь-то и возникает понятие «числовой плоскости», где по оси x располагаются действительные числа, а по оси y мнимые, т.е. те же действительные, только умноженные на «число» i= ?-1. Но тогда между этими осями получается противоречие – на действительной оси множитель 1

является нейтральным, а на мнимой оси множитель i

нет, а это не согласуется с базовыми свойствами чисел. Если уж вводится число i, то оно должно присутствовать на обеих осях, но тогда нет никакого смысла введения второй оси. Вот и выходит, что с точки зрения базовых свойств чисел эфемерное создание в виде числовой плоскости – полная бессмыслица.]. По-русски его можно назвать «Не пришей кобыле хвост!». Это уравнение совсем не безобидно, т.к. с практическими задачами оно никак не связано, а основы науки подрывает очень даже существенно. Тем не менее, дьявольское искушение на пустом месте создать нечто очень эффектное и грандиозное оказалось сильнее здравого смысла, и Эйлер решил продемонстрировать новые математические возможности на практике.

ВТФ, которую Эйлеру никак не удавалось доказать, отлично подходила бы для демонстрации возможностей новой чудо алгебры. Однако результат получился более чем скромным – вместо общего доказательства ВТФ удалось доказать только один частный случай для 3-й степени [22]. Более амбициозно выглядело доказательство другой теоремы Ферма о единственном решении в целых числах уравнения y

= x

+ 2. Ведь это была задача ох какая трудная и её, как и ВТФ, в то время никто из математиков не мог решить. Несмотря на то, что сама возможность разрешимости любого алгебраического уравнения ещё не была доказана, эти демонстрации Эйлера были восприняты на ура. Оставалось лишь найти решение проблемы под названием «Основная теорема алгебры». С этой задачей блестяще справился в 1799 г. настоящий титан науки Карл Гаусс (Carl Gau?), который представил доказательство аж 4-мя разными способами!

Рисунок 17

Карл Фридрих Гаусс

Научное сообщество встретило все эти «достижения» бурными овациями. А как радовался нечестивый, так и не передать. Да уж, это надо же, как весь цивилизованный учёный мир загнал сам себя в тупик! Ведь очевидно, что для науки, которая на арифметику не опирается, никаких разумных ограничений не существует и последствия будут печальными, а от доминирования алгебры арифметика станет настолько трудной, что острословы язвительно назовут её наукой для элитарных математиков, в которой они могут демонстрировать остроту своего ума! Но сами-то учёные, ничего не подозревающие и преисполненные самых что ни есть наилучших побуждений, продолжали продвигать науку вперёд к новым высотам, причём так усердно, что толи ненароком, толи по недоразумению взяли, да и потеряли «Золотую теорему Ферма» (ЗТФ)! А ведь это было одно из самых впечатляющих открытий Пьера Ферма в арифметике, которым он очень гордился.

Рисунок 18

Жозеф Лагранж

Случилось так, что третий в истории королевский математик Жозеф Лагранж (Joseph Lagrange) вместе со своим предшественником, вторым королевским, (и первым императорским!), математиком Леонардом Эйлером, доказал в 1772 году лишь один частный случай ЗТФ для квадратов, чем прославился на весь мир. Это замечательное достижение науки получило название «Теорема Лагранжа о четырёх квадратах».

Наверное, это хорошо, что Лагранж два года не дожил до того момента, когда в 1815 г. совсем ещё молодой Огюстен Коши? (Augustin Cauchy) представил своё общее доказательство ЗТФ для всех многоугольных чисел. Но тут вдруг произошло нечто ужасное, неизвестно откуда появился нечестивый и вставил свое фэ. И вот никакой тебе мировой славы, да ещё и полная обструкция со стороны коллег.

Рисунок 19

Огюстен Коши?

И ничего уж тут не поделаешь, ну не взлюбили академики Коши и тихим сапом добились того, что это общее доказательство ЗТФ так и не попало в учебники. Также, как и доказательства Гаусса 1801 г. для треугольников и тех же квадратов никто не вспоминает, но вот зато в учебниках до сих пор по-прежнему и очень подробно излагается знаменитая теорема Лагранжа.

Впрочем, в наш-то век всеобщей информатизации можно и не сразу заметить того, что ищешь. Если, скажем, кто-то обнаружил потерю ЗТФ и передал эту новость в Интернет, глядишь и появится кто-нибудь из любопытных, зайдёт в самую большую парижскую библиотеку и найдёт потрескавшиеся пожелтевшие от времени тома с собранием сочинений Огюстена Коши. И вот оно доказательство ЗТФ! А если ему ещё и перевод сделать, да вместе с факсимильным оригиналом разместить в том же Интернете, то это будет ох какая сенсация! … Ой, гляньте-ка, нечестивый-то просто помирает со смеху!

Рисунок 20

Мари?-Софи? Жерме?н

Тем временем, учёные всего мира, воодушевившись этими грандиозными подвижками, так воспрянули, что замахнулись аж на саму ВТФ! К ним присоединилась ещё и знаменитая женщина, очень известная среди учёных и математиков Мари?-Софи? Жерме?н (Marie-Sophie Germain). Эта талантливая и амбициозная мадмуазель предложила изящный способ, который применили сразу два гиганта математической мысли Лежён Дирихле? (Lejeune Dirichlet) и Адриен Лежа?ндр (Adrien Legendre), чтобы доказать… только один частный случай ВТФ для пятой степени.

Рисунок 21

Лежён Дирихле?

Рисунок 22

Адриен Лежа?ндр

Ещё один такой же гигант Габриэль Ламе? (Gabriel Lamе), сумел-таки сделать почти невозможное и получить доказательство высшей трудности… другого частного случая ВТФ для седьмой степени.

Рисунок 23

Габриэль Ламе?

Таким образом, вся эта элитарная четвёрка представителей из высшего общества учёных сумела доказать аж целых два (!) частных случая ВТФ [3], [28].

Этим результатом можно было гордиться, поскольку даже Эйлер также смог доказать лишь два частных случая ВТФ для 3-ей и 4-ой степеней. В доказательстве для 4-ой степени он применил метод спуска, следуя в точности рекомендациям Ферма, (см. Приложение II). Этот случай особенно важен тем, что его доказательство действительно для всех чётных степеней, т.е. для получения общего доказательства ВТФ можно рассматривать только нечётные степени.

Следует отметить, что именно Эйлер решил, (и даже существенно расширил!), почти все наиболее трудные задачи Ферма и если бы не он, то одно лишь имя Ферма могло бы вызывать у математиков настоящий озноб. Но только не у Софи? Жермен, которую совсем не устраивала ситуация с недоказанной ВТФ, и она даже отважилась предложить заняться этой задачей самому Гауссу! Но тот просто отмахнулся от неё, ответив, что ВТФ интересует его мало, а подобных утверждений, которые невозможно ни доказать, ни опровергнуть, можно найти сколько угодно.

Конечно, Гаусс и сам был бы рад услужить этой даме, но если бы он мог это сделать, то и уговаривать его было бы не нужно. Например, с помощью разработанной им «Арифметики вычетов», прообразом которой послужила «Малая теорема Ферма», было наглядно показано, как можно эффективно решать труднейшие задачи арифметики. В частности, только Гауссу удалось найти решение задачи Ферма о вычислении двух единственно возможных квадратов, сумма которых даёт заданное простое число типа 4n+1 [17].

Характерная особенность Гаусса – это его неприязнь к сомнительным нововведениям. Например, вряд ли он мог бы представить себя создателем геометрии кривых пространств. Но когда он установил, что такая геометрия может иметь место и не содержать противоречий, то был этим очень озадачен. Он был уверен, что практического применения его находка иметь не может из-за отсутствия каких-либо реальных фактов, подтверждающих что-либо подобное, однако быстро нашёл хороший выход – просто помог опубликовать это открытие своему русскому коллеге Николаю Лобачевскому и сделал это так искусно, что никто даже не удивился, когда работу по неевклидовой геометрии российский профессор и ректор Казанского университета издал… в Берлине и на немецком языке! В будущем сомнения Гаусса подтвердились. Появились последователи и наводнили науку целой кучей подобных «открытий».

Несмотря на то, что своим доказательством «Основной теоремы алгебры» Гаусс поддержал Эйлера в продвижении его идеи применения «комплексных чисел», никаких других возможностей для подвижек в этом направлении он не обнаружил. Да и то, что продемонстрировал Эйлер, его также не впечатлило. Более того, даже современная наука ничего вразумительного по применению «комплексных чисел» предложить не может. Зато море всяческих «научных» трудов, исследований и учебников по этой теме явно неадекватно её истиной ценности. Гаусс как чувствовал, что с этими «числами» что-то неладно и добром это не кончится, потому в этом направлении и не работал.

Рисунок 24
<< 1 2 3 4 5 6 7 8 9 ... 19 >>
На страницу:
5 из 19

Другие электронные книги автора Юрий Вениаминович Красков

Другие аудиокниги автора Юрий Вениаминович Красков