Оценить:
 Рейтинг: 0

Чудеса арифметики от Пьера Симона де Ферма

Год написания книги
2021
<< 1 2 3 4 5 6 7 8 9 10 ... 19 >>
На страницу:
6 из 19
Настройки чтения
Размер шрифта
Высота строк
Поля

Эрнст Куммер

Гром грянул в 1847 году, когда на заседании членов Французской академии наук Габриэль Ламе и Огюстен Коши сообщили, что их доказательства ВТФ уже готовы к рассмотрению на конкурсе. Однако, когда для выявления победителя уже можно было вскрыть полученные от них запечатанные конверты, всех опустил на грешную землю немецкий математик Эрнст Куммер (Ernst Kummer). В его письме сообщалось, что доказательство ВТФ на основе «комплексных чисел» невозможно, из-за неоднозначности их разложения на простые множители[17 - Согласно основной теоремы арифметики разложение любого натурального числа на простые множители всегда однозначно, например, 12=2?2?3, т.е. иными простыми множителями это число, как и любое другое, представить невозможно. Но для «комплексных чисел», в общем случае однозначность утрачивается, например,12=(1+?–11)?(1+?–11)=(2+?–8)?(2+?–8)Фактически это означает крушение науки в самих ее основах. Однако общепринятых критериев, (в виде аксиом), того, что можно относить к числам, а что нет, как не было, так и нет до сих пор.].

Вот тебе на! Эти-то самые «комплексные числа» оказывается вовсе и не числа!!! И нет бы заметить, наконец, что после того, как из-под науки вышибли арифметику, она висит в воздухе, не имея никакой прочной основы. Да и ошибки великих в своих последствиях тоже экстремальны, и они начинают корёжить науку, да так, что она, вместо целостной системы знаний, создает кучу не связанных между собой фрагментов.

Если уж так случилось, то ещё тогда в 1847 году эти самые «комплексные числа» нужно было со всеми почестями торжественно похоронить. Но вот с этим делом как-то совсем не заладилось и неупокоенные души давно умерших теорий оказываются настолько живучими, что их никакими силами не удаётся изгнать из учебников и профессорских лекций. Они будут кочевать по разным книгам и справочникам, авторы которых будут в полном неведении, насколько их труды обесцениваются от этого никому не нужного балласта.

В упомянутой книге Сингха хорошо показано как неоднозначность разложения составных целых чисел на множители лишает возможностей построить логические заключения в доказательствах и там же сообщается о том, что теорема об однозначности такого разложения для натуральных чисел была дана ещё в «Началах» Евклида. Конкретная книга и место расположения в теоремы не указано, поэтому найти нужный текст довольно сложно, однако это действительно оказалось так[18 - Теорема и ее доказательство дается в «Началах» Евклида книга IX, предложение 14. Без этой теоремы решение преобладающего множества арифметических задач становится либо неполным, либо вообще невозможным.].

Рисунок 25

Евклид

«Начала» Евклида» – очень старая книга с архаичной терминологией, в которой эта исключительно важная для науки теорема как-то затерялась и о ней просто забыли. Первым обнаружил пропажу Гаусс. Он сформулировал её вновь и дал доказательство, содержавшее на удивление простую и даже детскую ошибку, при которой в качестве аргументации используется как раз то, что нужно доказать, (см. п. 3.3.1).

Но ведь это же не рядовая теорема, на ней держится вся наука! А что же у Евклида? О, Господи! По сути, его доказательство такое же, как у Гаусса, т.е. ошибочное!!! Рассказать кому, так ведь и не поверят! На одном и том же месте споткнулись аж три гиганта науки: Евклид, Эйлер и Гаусс! Но тогда выходит, что вся эта наука липовая, а теперь, благодаря книге Сингха и вопреки всем благим намерениям автора, эта наводившая на всех ужас ВТФ, которая теперь даже в теории стала вообще недоказуемой, рассвирепела так, что, как истинное чудовище, одним махом обесценила все вековые труды учёных! Но они-то живут не в сказочном, а в настоящем королевстве кривых зеркал, но сами-то ничего об этом ещё не знают.

Фиаско, которое потерпели академики Коши и Ламе, не привело к отказу от использования в науке суррогатов чисел, тем более, что сокрушивший их работы Куммер нашёл способ, позволяющий, (при небольшой модернизации), доказывать ВТФ для любого конкретного частного случая. До окончательной победы над ней оставалась лишь самая малость – получить единое общее доказательство. С тех пор прошло уже 170 лет, а воз и ныне там. Поддержанные в своё время гением Эйлера «комплексные числа» и в наши дни представляются как некое расширение понятия числа. Это выглядит очень внушительно и солидно, но всё же требует чёткого определения самого этого понятия. А вот как раз с этим дела совсем плохи.

Студенты, интуитивно чувствующие, что их понапрасну мучают той самой филькиной грамотой про какие-то несуществующие числа, возьми, да и спроси: «А что такое число?» Им и невдомёк, что ни один профессор ничего путного ответить на этот вопрос не может, даже если он перечитал всё, что только есть по математике. Один из них всё же не выдержал издевательских намеков и издал целую книжку под названием «Что такое число?» [21]. В ней он столько всего понаписал, что студенты чётко усвоили – такой вопрос лучше не задавать.

Рисунок 26

Франсуа Вие?т

Тем временем учёные продолжали двигать науку вперед, не заморачиваясь на таких мелочах как сущность понятия числа. Так они насоздавали целую кучу всяких новых алгебр, пользуясь тем, что никаких препятствий на этом пути не было. Но они не были продолжением вот той, настоящей, основателем которой был первый королевский математик Франсуа Вие?т (Fran?ois Vi?te), служивший советником при дворе французского короля Генриха III. Но если эти новые алгебры особые, то их терминология и основы тоже особые.

Так потихоньку в науке стал формироваться некий особенный птичий язык, понятный только авторам этих самых что ни есть новаторских разработок. Дошло даже и до того, что стали появляться математические сообщества, творящие науку только для самих себя любимых и вдобавок к этому из ничего стали появляться новейшие числа – «гиперкомплексные», «кватернионы», «октонионы», и т.п. Правда, впечатление от новинок портил нет-нет, да и высовывающийся неизвестно откуда тот самый кобылий хвост[19 - Советский математик Лев Понтрягин показал, что эти «числа» не обладают базовым свойством коммутативности, т.е. для них ab ? ba [24]. Следовательно, одно и то же такое «число» нужно представлять только в виде, разложенном на множители, иначе в нём будут одновременно разные величины. Когда в оправдание подобных творений говорят, что математикам не хватает каких-то чисел, то на деле это может означать, что им явно не хватает разума.]. Получать этим хвостом по фэйсу не очень-то приятно, но это уже издержки профессии. В стремлении уйти от таких издержек, был найден просто блестящий выход из затруднений с определением сущности понятия числа. Учёные наконец-то осознали, что его нужно выводить из других более простых понятий, например, таких, как понятие «множество». Всё оказалось так просто! Множество – это то чего много. Ну разве не понятно? Однако опять получилось так, что без пустых множеств никак не обойтись, а в этом случае много может означать ничего и снова возникает вопрос, так что же это такое множество, число или нет?

Рисунок 27

Георг Кантор

Георг Кантор (Georg Cantor) разработал свою теорию множеств, которую другие математики, такие как, например, Анри Пуанкаре? (Henri Poincarе), обзывали всякими нехорошими словами и никак не хотели признавать. Но вдруг неожиданно для всех респектабельное «Лондонское королевское общество», (английская академия наук), в 1904 году взяло, да и наградило Кантора своей медалью. Так вот оказывается, где решаются судьбы науки![20 - Если какой-то очень уважаемый общественный институт поощряет таким образом развитие науки, то что на это можно возразить-то? Однако вот такая возникающая невесть откуда щедрость и бескорыстность со стороны непонятно откуда взявшихся благодетелей выглядит как-то странно, если не сказать заведомо предвзято. Ведь с давних пор хорошо известно, откуда берутся и куда приводят подобные «благие намерения», да и результат этих деяний тоже очевиден. Чем больше возникает учреждений для поощрения учёных, тем в большей степени реальная наука оказывается в руинах. Чего стоит одна только нобелевская премия за «открытие», подумать только … ускоренного разбегания галактик!!!] И всё было бы хорошо, да вдруг опять стряслась ещё одна беда. Откуда ни возьмись, в этой самой теории множеств стали появляться непреодолимые противоречия, о которых также очень подробно рассказывается в книге Сингха. В научном сообществе сразу все переполошились и стали думать, как эту проблему решать. А она упёрлась как в стенку и никак не хотела решаться. Все как-то приуныли, но потом всё-таки опять воспряли.

Рисунок 28

Давид Гилберт

Ведь теперь-то за дело взялся сам Давид Гилберт (David Hilbert), великий математик, который первым решил труднейшую проблему Варинга, имеющую прямое отношение к ВТФ[21 - Проблема Варинга – это утверждение о том, что любое натуральное число N представимо в виде суммы одинаковых степеней x

, т.е. в виде N=x

+ x

+…+ x

. Впервые её доказал Гилберт в 1909 году, а в 1920 г. математики Харди и Литлвуд упростили доказательство, но их методы ещё не относилось к элементарным. И только в 1942 г. советский математик Ю. В. Линник опубликовал арифметическое доказательство, применив метод Шнилермана. Теорема Варинга – Гилберта имеет фундаментальное значение с точки зрения сложения степеней и не противоречит ВТФ, т.к. в ней нет ограничений количества слагаемых.]. Любопытно, также и то, что Гилберт повторил опыт Эйлера, навеянный, по всей видимости, проблемой ВТФ. Похоже на то, что у Эйлера в какой-то момент стали возникать сомнения в том, что ВТФ вообще доказуема и в качестве аналогичного примера он взял, да и предположил, что уравнение a

+b

+c

=d

также, как и уравнение Ферма a

+b

=c

при n>2, в целых числах неразрешимо, но в конечном итоге всё-таки выяснилось, что он ошибся[22 - Контрпример, опровергающий гипотезу Эйлера, представляется как95800

+ 217519

+ 414560

= 422481

Другой пример2682440

+15365639

+18796760

=20615673

.Для пятой степени всё значительно проще27

+84

+110

+133

= 144

.Возможно также, что может быть разработан и общий метод подобных вычислений, если удастся получить соответствующее конструктивное доказательство проблемы Варинга.].

По примеру Эйлера в канун XX столетия Гилберт предложил научному сообществу 23 проблемы, которые, по его предположению в обозримом будущем вряд ли будут решены. Однако коллеги Гилберта справились с ними довольно быстро, а гипотеза Эйлера продержалась почти до XXI века и была опровергнута только с помощью компьютеров, о чём также рассказано в книге Сингха. Вот так подозрение, что ВТФ была всего лишь предположением её автора, лишилось всяких оснований.

С преодолением противоречий в теории множеств Гилберт не справился, да и не мог это сделать, поскольку проблема эта вовсе не математическая, а информационная, и решать её рано или поздно должны были компьютерщики, а когда это произошло, то они на удивление очень легко, (и абсолютно верно), нашли решение, просто ввели запрет на замкнутые цепочки ссылок[23 - Конечно же, это вовсе не означает, что компьютерщики лучше разбираются в этой проблеме, чем Гилберт. У них просто не было иного выхода. Ведь замкнутые ссылки зацикливаются, а это приведёт к зависанию компьютера.]. Ясно, что Гилберт тогда не мог об этом знать и решил, что наиболее надёжный заслон противоречиям можно обеспечить с помощью аксиом. Но ведь аксиомы-то не могут создаваться на пустом месте и должны из чего-то исходить, а это что-то есть число, но вот что это такое, ни тогда, ни сейчас никто толком объяснить не может.

Блестящий пример того, что можно натворить с аксиомами, изложен в той же самой книге Сингха. Очевидный казус с отсутствием четкой формулировки понятия числа может невзначай испортить любую радужную картину и с этим нужно что-то делать. Особенно неприятно это вылезает при обосновании тех же «комплексных чисел». Возможно, этим и было вызвано появление в книге приложения 8 под названием «Аксиомы арифметики», в котором 5 известных ранее аксиом, относящиеся к счёту, не упоминаются вообще, (иначе задумка не пройдет), а те, которые определяют базовые свойства чисел, дополняются и появляется новая аксиома о том, что должны существовать числа n и k, такие, что n + k = 0 и вот теперь-то уже всё в ажуре!

Конечно, сам Сингх никогда не додумался бы до такого. Здесь отчетливо просматривается помощь консультантов, которые почему-то забыли сменить название приложения, ведь это теперь уже не аксиомы арифметики, поскольку от неё теперь остались только рожки да ножки[24 - Аксиома о том, что сумма двух целых положительных чисел может быть равна нулю, явно не относится к арифметике, т.к. с натуральными или производными от них числами это явно невозможно. Но если есть только алгебра, а арифметики нет, то и не такое станет возможным.]. Школьная арифметика, которая долгое время итак еле держалась на таблице умножения да на пропорциях, теперь уж совсем оскудела. Вместо неё теперь вовсю осваивают калькулятор и компьютер. Если такой вот «прогресс» продолжится и дальше, то переход к жизни на деревьях для нашей цивилизации произойдёт очень быстро и естественно.

На этом фоне действительно выдающееся научное открытие было сделано в Википедии, которая по искусству и масштабам дезинформации просто не имеет себе равных. Долгое время многие думали, что существует всего четыре действия арифметики – это сложение и вычитание, умножение и деление. Ан нет! Есть еще возведение в степень и… извлечение корня (???). Авторы статей, которые выдали нам это «знание» через Википедию, явно оплошали, т.к. извлечение корня – это тоже самое возведение в степень, только не в целую, а в дробную. Нет, конечно, они знали об этом, но вот о чём они и не догадывались, так это о том, что это действие арифметики было ими списано у самого Эйлера в той самой книжке о его чудо алгебре[25 - Любопытно, что даже Эйлер, (видимо по оплошности), назвал извлечение корня операцией обратной по отношению к возведению в степень [4], хотя и отлично знал, что это не так. Но ведь это и не секрет, что даже особо одарённые люди часто путаются в очень простых вещах. Эйлер явно не испытывал тяги к формальным построениям основ науки, поскольку у него всегда было в избытке всяких других идей. Он-то думал, что с формальностями разберутся и другие, а получилось так, что именно отсюда и выросла самая большая проблема.].
<< 1 2 3 4 5 6 7 8 9 10 ... 19 >>
На страницу:
6 из 19

Другие электронные книги автора Юрий Вениаминович Красков

Другие аудиокниги автора Юрий Вениаминович Красков