Оценить:
 Рейтинг: 0

Каталитический риформинг бензинов. Теория и практика

Год написания книги
2019
Теги
<< 1 ... 14 15 16 17 18 19 20 21 22 ... 25 >>
На страницу:
18 из 25
Настройки чтения
Размер шрифта
Высота строк
Поля

н-парафинов включает следующие стадии: дегидрирование и образование н-олефина (М), изомеризацию с образованием изоолефина (А), циклизацию изоолефина с образованием алкилциклопентана (А), дегидрирование алкилциклопентана до циклического олефина (М), расширение цикла с образованием 6-членного циклопарафина (А), дегидрирование циклопарафина с получением ароматического углеводорода (М).

Медленными стадиями превращения являются реакции циклизации олефина с образованием 5-членного кольца и последующая реакция расширения цикла. Обе реакции проходят с участием кислотных центров.

Тот факт, что при риформинге н-гексана введение н-бутиламина приводит к снижению концентрации циклогексана при одновременном накоплении метилциклопентана, может свидетельствовать о том, что для осуществления превращений требуются разные кислотные центры [47], в частности, для реакции циклизации кислотные центры Льюиса, представленные ионами Al + 3.

Снижение содержания хлора и, следовательно, бренстедовской кислотности приводит к накоплению молекул циклического олефина (метилциклопентена в случае ароматизации гексана) на поверхности платины и более глубокому дегидрированию с образованием производных циклопентадиена, легко полимеризующегося с образованием предшественников кокса.

Альтернативный маршрут С

-дегидроциклизации, протекающий на катализаторе Pt/C и Pt/KL-цеолит (катализатор RZ-100), в условиях платформинга на кислотном носителе является второстепенным механизмом ароматизации алканов.

Изомеризация н-парафиновых углеводородов включает в себя дегидрирование на металлических центрах с образованием олефинов нормального строения, изомеризацию полученных олефинов на кислотных центрах с образованием олефинов изостроения и гидрирование на металлических центрах до изопарафина. На примере этого превращения становятся понятными преимущества бифункционального катализатора.

Промежуточным соединением в реакции скелетной изомеризации является карбениевый ион, имеющий структуру с трехкоординированным атомом углерода.

В случае олефина образование карбениевого иона происходит достаточно легко при атаке протона, предоставляемого кислотным центром Бренстеда, на ?-связь. При этом ?-связь разрывается и образуется новая С–Н-связь.

Если же исходным углеводородом является алкан, то

образование карбениевого иона включает атаку протона на

С–Н-связь. При этом вначале образуется промежуточный карбониевый ион, представляющий катион с пятикоординированным атомом углерода. Например, при протонировании 2-метилпентана образуется карбониевый ион (рис. 17, б). Распад этого катиона приводит к образованию карбениевого иона и молекулы Н

(см. рис. 17, а).

Рис. 17. Схема образования:

а – карбениевого иона; б – карбониевого иона

В этом случае разрывается более прочная С–Н-связь.

Значительная разница в энергиях связи (394–239 = 155 кДж/моль) делает возможным образование карбениевого иона из алкана лишь при использовании твердых суперкислот, например, Н-морденитов с силикатным модулем около 20, в условиях же платформинга подобный механизм не реализуется.

Глава 9. Катализ на

d

-металлах

Природа каталитических свойств d-металлов. Связь с координационной ненасыщенностью поверхностных атомов металлов.

Донорно-акцепторная и дативная связи в металлорганических комплексах. Модель Дьюра – Чата – Дункансона.

Механизм образования связей на примере молекулы СО.

Ослабление связей в молекуле СО как результат образования донорно-акцепторной и дативной связи.

Как образуются d-зоны в металлических катализаторах.

Почему происходит химическая адсорбция.

Активация молекул как результат хемосорбции.

Принцип Сабатье и вулканообразные кривые Баландина.

Почему платина является базовым элементом катализаторов риформинга.

Почему реакции дегидрирования являются быстрыми реакциями, а реакции гидрогенолиза медленными: каталитический эффект платины

Каталитическая активность d-металлов обусловлена координационной ненасыщенностью атомов, образующих поверхностные грани металлических частиц.

Координационное число (КЧ) платины, формирующей гранецентрированную кубическую решетку (ГЦК), равно 12.

КЧ для поверхностных атомов зависят от типа поверхности и составляют 9 для граней (111), 8 для (100) и 7 для (110).

Атомы на ступенях и изломах, ребрах и углах частиц имеют еще меньшие КЧ – от 7 до 5 [54].

Вывод атома из объема металла на поверхность является сильно эндотермическим процессом, связанным с разрывом связей с соседними атомами.

Энергия, необходимая для образования поверхностного атома, прямо пропорциональна энергии когезии металла и координационной ненасыщенности поверхностного атома.

Уменьшение размера частицы также приводит к увеличению поверхностной энергии за счет увеличения доли поверхностных атомов.

Переход системы в более устойчивое состояние с меньшей энергией Гиббса достигается путем коалесценции частиц при повышенных температурах или за счет адсорбции молекул окружающей среды. Из двух видов адсорбции, физической и химической, последняя имеет ключевое значение для гетерогенного катализа, так как связана с активацией молекулы, обусловленной изменениями ее электронной структуры при адсорбции на поверхности твердого тела.

В основе современного понимания механизма химической адсорбции и катализа на d-металлах лежат идеи о координационно-донорной и дативной связях и d-зоне, которые были заимствованы из металлорганической химии и физики твердого тела соответственно.

Дьюар в 1951 году предложил модель образования соли Цейзе и ее палладиевого аналога, комплекса Караша, представляющих собой комплексы этилена и металла (рис. 18) [37].

Рис. 18. Структура комплексов Pt(Pd) c этиленом

В соответствии с этой моделью, в доработанном виде носящей название модели Дьюара – Чата – Дункансона, в образовании комплекса принимают участие два типа связей: донорно-акцепторная связь, образуемая за счет передачи электронной плотности ?-связи молекулы этилена на вакантную d-орбиталь атома платины, и дативная связь, которая возникает за счет перекрытия заполненной d-орбитали атома металла с разрыхляющей орбиталью молекулы этилена. Заметим, что обе связи являются примером донорно-акцепторного взаимодействия, так что выделение дативной связи сделано для удобства, это указание на то, что донором в этом случае является металл.

Атомными орбиталями, удовлетворяющими этому требованию, являются dz

– и dxz-орбитали переходного металла.

Ниже представлены схемы образования донорно-акцепторной и дативной связей d-металла и молекулы этилена (рис. 19). Донорно-акцепторная связь образуется при перекрывании ?-МО этилена с dz

-AO металла. В образовании дативной связи участвуют разрыхляющая ?*-МО этилена и dxy-АО металла.

Рис. 19. Схема образования – и ?-связей:

стрелками показаны направления смещения электронной плотности

Образование донорно-акцепторной связи осуществляется по ?-типу, а дативной связи – по ?-типу.

Для образования дативной связи возможны два варианта перекрывания орбиталей.
<< 1 ... 14 15 16 17 18 19 20 21 22 ... 25 >>
На страницу:
18 из 25