Оценить:
 Рейтинг: 0

Методы и методики количественного анализа. Практическое пособие

<< 1 ... 16 17 18 19 20 21 22 23 24 ... 32 >>
На страницу:
20 из 32
Настройки чтения
Размер шрифта
Высота строк
Поля

– подбор подходящей аналитической реакции или физического свойства вещества;

– правильное выполнение всех аналитических процедур;

– применение достаточно надежных способов измерения результатов анализа.

В зависимости от принципа получения аналитического сигнала все количественные методы аналитической химии делятся на следующие основные группы:

1. Химические методы анализа основаны на использовании химических реакций. При этом проводят реакцию, а затем наблюдают аналитический эффект или измеряют аналитический сигнал. В качестве аналитического сигнала в химических методах выступает либо масса вещества (гравиметрический метод анализа), либо объем реактива – титранта (титриметрические методы). Химические методы применяют для определения состава и количества входящих в продукцию веществ. Они подразделяются на количественные и качественные – это методы аналитической, органической, физической и биологической химии.

2. Биологические методы анализа основаны на измерении интенсивности развития микроорганизмов в зависимости от количества анализируемого вещества. Биологические методы используют для определения пищевой и биологической ценности продукции. Их подразделяют на физиологические и микробиологические. Физиологические применяют для установления степени усвоения и переваривания питательных веществ, безвредности, биологической ценности. Микробиологические методы применяют для определения степени обсемененности продукции различными микроорганизмами.

3. Физические методы анализа основаны на измерении физических свойств веществ, зависящих от химического состава. Физические методы – методы, при реализации которых регистрируется аналитический сигнал каких-либо физических свойств (ядерные, спектральные, оптические) без проведения химической реакции. При этом наблюдение аналитического эффекта или измерение аналитического сигнала выполняют непосредственно с анализируемым веществом. Химические реакции либо совсем не проводят, либо они играют вспомогательную роль. Основной упор делают на измерение аналитического сигнала.

Физические методы применяют для определения физических свойств – коэффициента рефракции, вязкости, липкости и др. К таким методам относятся микроскопия, поляриметрия, колориметрия, рефрактометрия, спектроскопия, реология, люминесцентный анализ и другие. Также, с помощью физических методов определяют относительную плотность и удельную массу, температуру плавления и затвердевания, концентрацию водородных ионов, показатель преломления света, механическую устойчивость и прочность, эластичность и пористость, наличие примесей и другие показатели. В физических методах химические реакции отсутствуют или имеют второстепенное значение, хотя в спектральном анализе интенсивность линий всегда существенно зависит от химических реакций в угольном электроде или в газовом пламени. Поэтому иногда физические методы включают в группу физико-химических методов, так как достаточно строгого однозначного различия между физическими и физико-химическими методами нет, и выделение физических методов в отдельную группу не имеет принципиального значения.

4. Физико-химические методы анализа основаны на регистрации аналитического сигнала какого-то физического свойства (потенциала, тока, количества электричества, интенсивности излучения света или его поглощения и т. д.) при проведении химической реакции. При этом сначала проводят реакцию, а затем измеряют физическое свойство продукта реакции или используют измерение физического свойства в ходе реакции для установления конечной точки титрования.

Деление методов на физические и физико-химические часто условно, так как бывает трудно отнести метод к той или иной группе. Физические и физико-химические методы называют еще инструментальными методами анализа, поскольку они требуют использования специальной аппаратуры. Кроме того, деление методов на химические и инструментальные осуществляют на основе типа взаимодействия: в химических методах – взаимодействие вещества с веществом, в инструментальных – вещества с энергией. В зависимости от вида энергии в веществе происходит изменение энергетического состояния составляющих его частиц (атомов, молекул, ионов); при этом меняется физическое свойство, которое может быть использовано в качестве аналитического сигнала.

Физико-химические методы анализа стали применять позднее, чем химические методы анализа, когда была установлена и изучена связь между физическими свойствами веществ и их составом.

Химические методы анализа иначе называют классическими, а физические и физико-химические методы анализа – инструментальными, т. к., проведение анализа с привлечением этих методов невозможно без использования измерительной аппаратуры.

Применяемые в настоящее время инструментальные методы исследования состава и свойств пищевых продуктов основываются на использовании физических, химических, биохимических и других эффектов взаимодействия исследуемого объекта с первичными преобразователями (датчиками). Сигналы от датчиков воспринимаются вторичными приборами и преобразуются в информацию (табл. 2.3.)

Таблица 2.3.

Классификация инструментальных методов исследования состава и свойств вещества

По способам определения различают прямые и косвенные методы анализа. В прямых методах количество вещества находят непосредственным пересчётом измеренного аналитического сигнала в количество вещества (массу, концентрацию) с помощью уравнения связи. В косвенных методах аналитический сигнал используется для установления конца химической реакции (как своеобразный индикатор), а количество определяемого вещества, вступившего в реакцию, находят с помощью закона эквивалентов, т.е. по уравнению, непосредственно не связанному с названием метода.

По способу количественных определений различают безэталонные и эталонныеинструментальные методы анализа.

Безэталонные методы основаны на строгих закономерностях, формульное выражение которых позволяет пересчитать интенсивность измеренного аналитического сигнала непосредственно в количестве определяемого вещества с привлечением только табличных величин. В качестве такой закономерности может выступать, например, закон Фарадея, позволяющий по току и времени электролиза рассчитать количество определяемого вещества в растворе при кулонометрическом титровании. Безэталонных методов очень мало, поскольку каждое аналитическое определение представляет собой систему сложных процессов, в которых невозможно теоретически учесть влияние каждого из многочисленных действующих факторов на результат анализа. В связи с этим при анализах пользуются определёнными приёмами, позволяющими экспериментально учесть эти влияния.

Наиболее распространённым приёмом является применение эталонов, т.е. образцов веществ или материалов с точно известным содержанием определяемого элемента (или нескольких элементов). При проведении анализа измеряют определяемое вещество исследуемого образца и эталона, сравнивают полученные данные и по известному содержанию элемента в эталоне рассчитывают содержание этого элемента в анализируемом образце. Эталоны могут быть изготовлены промышленным способом (стандартные образцы) или приготовляются в лаборатории непосредственно перед проведением анализа (образцы сравнения). Если в качестве стандартных образцов применяют химически чистые вещества (примесей меньше 0.05%), то их называют стандартными веществами.

На практике количественные определения инструментальными методами осуществляют по одному из трёх способов: градуировочной функции (стандартных серий), стандартов (сравнения) или стандартных добавок.

При работе по методу градуировочной функции с помощью стандартных веществ или стандартных образцов получают ряд образцов (или растворов), содержащих различные, но точно известные количества определяемого компонента. Иногда этот ряд называют стандартной серией. Затем проводят анализ этой стандартной серии и по полученным данным вычисляют значение чувствительности (в случае линейной градуировочной функции). После этого измеряют интенсивность аналитического сигнала в исследуемом объекте и вычисляют количество (массу, концентрацию) искомого компонента с помощью уравнения связи или находят по градуировочному графику.

Метод сравнения (стандартов) применим только для линейной градуировочной функции. Определение данного компонента проводят в стандартном образце (стандартном веществе), потом определяют в анализируемом объекте. Делением первого на второе вычисляют результат анализа.

Метод стандартных добавок применим тоже только к линейной градуировочной функции. В этом методе сначала проводят анализ навески исследуемого объекта, затем к навеске добавляют известное количество (массу, объём раствора) определяемого компонента и после анализа получают результат.

К инструментальным методам, используемым для оценки качества пищевых продуктов, предъявляется ряд требований:

– высокая чувствительность;

– хорошая селективность и разрешающая способность;

– высокая точность и воспроизводимость;

– быстрота проведения анализа;

– широкая область проведения анализа;

– возможность одновременного определения нескольких веществ;

– простота подготовки проб;

– легкость и простота работы с приборами;

– максимальная автоматизация процессов подготовки пробы и измерения;

– возможность работы в производственных условиях;

– приемлемая стоимость прибора.

Результаты определений показателей инструментальными методами не зависят от индивидуальных особенностей исследователя, отличаются точностью и выражаются в количественных показателях (процентах, граммах и др.).

2.3.2. Общая характеристика химических методов анализа

Химические методы анализа широко используются в экспертизе для установления химического состава пищевых продуктов и их соответствия требованиям техническим нормативным правовым актам. Ими определяют показатели качества сырья, а также изменения, происходящие в пищевых продуктах при транспортировании, хранении и реализации. Это методы аналитической, органической и биологической химии, основанные на химических свойствах веществ, способности их принимать участие в какой-либо специфической химической реакции.

К классическим химическим методам количественного анализа относятся:

1. Гравиметрический анализ, основанный на определении измерения массы анализируемого вещества или его составных частей, выделяемых в химически чистом состоянии или в виде соответствующих соединений.

2. Объёмный анализ. Различают следующие виды объёмные методы анализа:

– титриметрический количественный анализ – измерение объёма израсходованного на реакцию реактива точно известной концентрации;

– газовый объёмный количественный анализ – анализ газовых смесей, основанный на избирательном поглощении из анализируемой газовой смеси определяемого компонента подходящими поглотителями;

– седиментационный объёмный количественный анализ основан на расслоении дисперсных систем под действием силы тяжести, сопровождающемся отделением дисперсной фазы в виде осадка и последующем измерении объёма осадка в градуированной центрифужной пробирке. Основными достоинствами химических методов анализа являются простота выполнения и достаточно высокая точность (0,10—0,01%).

К недостаткам химических методов анализа относятся большая продолжительность и высокий предел обнаружения.

Гравиметрический (весовой) метод является одним из наиболее точных и универсальных методов. Сущность его состоит в том, что определяемый компонент осаждается в виде малорастворимого соединения и после прокаливания взвешивается на аналитических весах (метод осаждения) или выделяется в чистом виде и взвешивается (метод выделения), или отгоняется при прокаливании или высушивании и по разности в весе до прокаливания и после него определяется содержание летучего компонента (метод отгонки).

В практике товароведения гравиметрический метод чаще всего применяется для определения гигроскопической влаги и летучих веществ в пищевых продуктах.

Титриметрический метод. Сущность титриметрического (объемного) анализа заключается в определении количества вещества путем измерения объема другого вещества, вступающего с анализируемым веществом в реакцию.

В зависимости от типа реакции, лежащей в основе количественного определения, титриметрический анализ подразделяется на ряд методов (нейтрализация, окисление-восстановление, осаждение).

К методу нейтрализации относятся все объемные определения, в основе которых лежит реакция нейтрализации (Н
<< 1 ... 16 17 18 19 20 21 22 23 24 ... 32 >>
На страницу:
20 из 32